Metamath Proof Explorer


Theorem fmtno2prm

Description: The 2 nd Fermat number is a prime (_third Fermat prime_). (Contributed by AV, 13-Jun-2021)

Ref Expression
Assertion fmtno2prm
|- ( FermatNo ` 2 ) e. Prime

Proof

Step Hyp Ref Expression
1 fmtno2
 |-  ( FermatNo ` 2 ) = ; 1 7
2 17prm
 |-  ; 1 7 e. Prime
3 1 2 eqeltri
 |-  ( FermatNo ` 2 ) e. Prime