| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 2 |  | fmtno |  |-  ( 2 e. NN0 -> ( FermatNo ` 2 ) = ( ( 2 ^ ( 2 ^ 2 ) ) + 1 ) ) | 
						
							| 3 | 1 2 | ax-mp |  |-  ( FermatNo ` 2 ) = ( ( 2 ^ ( 2 ^ 2 ) ) + 1 ) | 
						
							| 4 |  | sq2 |  |-  ( 2 ^ 2 ) = 4 | 
						
							| 5 | 4 | oveq2i |  |-  ( 2 ^ ( 2 ^ 2 ) ) = ( 2 ^ 4 ) | 
						
							| 6 | 5 | oveq1i |  |-  ( ( 2 ^ ( 2 ^ 2 ) ) + 1 ) = ( ( 2 ^ 4 ) + 1 ) | 
						
							| 7 |  | 2exp4 |  |-  ( 2 ^ 4 ) = ; 1 6 | 
						
							| 8 | 7 | oveq1i |  |-  ( ( 2 ^ 4 ) + 1 ) = ( ; 1 6 + 1 ) | 
						
							| 9 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 10 |  | 6nn0 |  |-  6 e. NN0 | 
						
							| 11 |  | 6p1e7 |  |-  ( 6 + 1 ) = 7 | 
						
							| 12 |  | eqid |  |-  ; 1 6 = ; 1 6 | 
						
							| 13 | 9 10 11 12 | decsuc |  |-  ( ; 1 6 + 1 ) = ; 1 7 | 
						
							| 14 | 6 8 13 | 3eqtri |  |-  ( ( 2 ^ ( 2 ^ 2 ) ) + 1 ) = ; 1 7 | 
						
							| 15 | 3 14 | eqtri |  |-  ( FermatNo ` 2 ) = ; 1 7 |