Step |
Hyp |
Ref |
Expression |
1 |
|
2nn0 |
|- 2 e. NN0 |
2 |
|
fmtno |
|- ( 2 e. NN0 -> ( FermatNo ` 2 ) = ( ( 2 ^ ( 2 ^ 2 ) ) + 1 ) ) |
3 |
1 2
|
ax-mp |
|- ( FermatNo ` 2 ) = ( ( 2 ^ ( 2 ^ 2 ) ) + 1 ) |
4 |
|
sq2 |
|- ( 2 ^ 2 ) = 4 |
5 |
4
|
oveq2i |
|- ( 2 ^ ( 2 ^ 2 ) ) = ( 2 ^ 4 ) |
6 |
5
|
oveq1i |
|- ( ( 2 ^ ( 2 ^ 2 ) ) + 1 ) = ( ( 2 ^ 4 ) + 1 ) |
7 |
|
2exp4 |
|- ( 2 ^ 4 ) = ; 1 6 |
8 |
7
|
oveq1i |
|- ( ( 2 ^ 4 ) + 1 ) = ( ; 1 6 + 1 ) |
9 |
|
1nn0 |
|- 1 e. NN0 |
10 |
|
6nn0 |
|- 6 e. NN0 |
11 |
|
6p1e7 |
|- ( 6 + 1 ) = 7 |
12 |
|
eqid |
|- ; 1 6 = ; 1 6 |
13 |
9 10 11 12
|
decsuc |
|- ( ; 1 6 + 1 ) = ; 1 7 |
14 |
6 8 13
|
3eqtri |
|- ( ( 2 ^ ( 2 ^ 2 ) ) + 1 ) = ; 1 7 |
15 |
3 14
|
eqtri |
|- ( FermatNo ` 2 ) = ; 1 7 |