| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 2 |  | fmtno | ⊢ ( 2  ∈  ℕ0  →  ( FermatNo ‘ 2 )  =  ( ( 2 ↑ ( 2 ↑ 2 ) )  +  1 ) ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ ( FermatNo ‘ 2 )  =  ( ( 2 ↑ ( 2 ↑ 2 ) )  +  1 ) | 
						
							| 4 |  | sq2 | ⊢ ( 2 ↑ 2 )  =  4 | 
						
							| 5 | 4 | oveq2i | ⊢ ( 2 ↑ ( 2 ↑ 2 ) )  =  ( 2 ↑ 4 ) | 
						
							| 6 | 5 | oveq1i | ⊢ ( ( 2 ↑ ( 2 ↑ 2 ) )  +  1 )  =  ( ( 2 ↑ 4 )  +  1 ) | 
						
							| 7 |  | 2exp4 | ⊢ ( 2 ↑ 4 )  =  ; 1 6 | 
						
							| 8 | 7 | oveq1i | ⊢ ( ( 2 ↑ 4 )  +  1 )  =  ( ; 1 6  +  1 ) | 
						
							| 9 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 10 |  | 6nn0 | ⊢ 6  ∈  ℕ0 | 
						
							| 11 |  | 6p1e7 | ⊢ ( 6  +  1 )  =  7 | 
						
							| 12 |  | eqid | ⊢ ; 1 6  =  ; 1 6 | 
						
							| 13 | 9 10 11 12 | decsuc | ⊢ ( ; 1 6  +  1 )  =  ; 1 7 | 
						
							| 14 | 6 8 13 | 3eqtri | ⊢ ( ( 2 ↑ ( 2 ↑ 2 ) )  +  1 )  =  ; 1 7 | 
						
							| 15 | 3 14 | eqtri | ⊢ ( FermatNo ‘ 2 )  =  ; 1 7 |