Metamath Proof Explorer


Theorem fmtno2

Description: The 2 nd Fermat number, see remark in ApostolNT p. 7. (Contributed by AV, 13-Jun-2021)

Ref Expression
Assertion fmtno2 FermatNo2=17

Proof

Step Hyp Ref Expression
1 2nn0 20
2 fmtno 20FermatNo2=222+1
3 1 2 ax-mp FermatNo2=222+1
4 sq2 22=4
5 4 oveq2i 222=24
6 5 oveq1i 222+1=24+1
7 2exp4 24=16
8 7 oveq1i 24+1=16+1
9 1nn0 10
10 6nn0 60
11 6p1e7 6+1=7
12 eqid 16=16
13 9 10 11 12 decsuc 16+1=17
14 6 8 13 3eqtri 222+1=17
15 3 14 eqtri FermatNo2=17