Description: 17 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014) (Revised by Mario Carneiro, 20-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 17prm | ⊢ ; 1 7 ∈ ℙ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 2 | 7nn | ⊢ 7 ∈ ℕ | |
| 3 | 1 2 | decnncl | ⊢ ; 1 7 ∈ ℕ |
| 4 | 1nn | ⊢ 1 ∈ ℕ | |
| 5 | 7nn0 | ⊢ 7 ∈ ℕ0 | |
| 6 | 1lt10 | ⊢ 1 < ; 1 0 | |
| 7 | 4 5 1 6 | declti | ⊢ 1 < ; 1 7 |
| 8 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
| 9 | 3t2e6 | ⊢ ( 3 · 2 ) = 6 | |
| 10 | df-7 | ⊢ 7 = ( 6 + 1 ) | |
| 11 | 1 8 9 10 | dec2dvds | ⊢ ¬ 2 ∥ ; 1 7 |
| 12 | 3nn | ⊢ 3 ∈ ℕ | |
| 13 | 5nn0 | ⊢ 5 ∈ ℕ0 | |
| 14 | 2nn | ⊢ 2 ∈ ℕ | |
| 15 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 16 | 5cn | ⊢ 5 ∈ ℂ | |
| 17 | 3cn | ⊢ 3 ∈ ℂ | |
| 18 | 5t3e15 | ⊢ ( 5 · 3 ) = ; 1 5 | |
| 19 | 16 17 18 | mulcomli | ⊢ ( 3 · 5 ) = ; 1 5 |
| 20 | 5p2e7 | ⊢ ( 5 + 2 ) = 7 | |
| 21 | 1 13 15 19 20 | decaddi | ⊢ ( ( 3 · 5 ) + 2 ) = ; 1 7 |
| 22 | 2lt3 | ⊢ 2 < 3 | |
| 23 | 12 13 14 21 22 | ndvdsi | ⊢ ¬ 3 ∥ ; 1 7 |
| 24 | 7lt10 | ⊢ 7 < ; 1 0 | |
| 25 | 1lt2 | ⊢ 1 < 2 | |
| 26 | 1 15 5 13 24 25 | decltc | ⊢ ; 1 7 < ; 2 5 |
| 27 | 3 7 11 23 26 | prmlem1 | ⊢ ; 1 7 ∈ ℙ |