| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prmlem1.n |
⊢ 𝑁 ∈ ℕ |
| 2 |
|
prmlem1.gt |
⊢ 1 < 𝑁 |
| 3 |
|
prmlem1.2 |
⊢ ¬ 2 ∥ 𝑁 |
| 4 |
|
prmlem1.3 |
⊢ ¬ 3 ∥ 𝑁 |
| 5 |
|
prmlem1.lt |
⊢ 𝑁 < ; 2 5 |
| 6 |
|
eluzelre |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 5 ) → 𝑥 ∈ ℝ ) |
| 7 |
6
|
resqcld |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 5 ) → ( 𝑥 ↑ 2 ) ∈ ℝ ) |
| 8 |
|
eluzle |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 5 ) → 5 ≤ 𝑥 ) |
| 9 |
|
5re |
⊢ 5 ∈ ℝ |
| 10 |
|
5nn0 |
⊢ 5 ∈ ℕ0 |
| 11 |
10
|
nn0ge0i |
⊢ 0 ≤ 5 |
| 12 |
|
le2sq2 |
⊢ ( ( ( 5 ∈ ℝ ∧ 0 ≤ 5 ) ∧ ( 𝑥 ∈ ℝ ∧ 5 ≤ 𝑥 ) ) → ( 5 ↑ 2 ) ≤ ( 𝑥 ↑ 2 ) ) |
| 13 |
9 11 12
|
mpanl12 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 5 ≤ 𝑥 ) → ( 5 ↑ 2 ) ≤ ( 𝑥 ↑ 2 ) ) |
| 14 |
6 8 13
|
syl2anc |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 5 ) → ( 5 ↑ 2 ) ≤ ( 𝑥 ↑ 2 ) ) |
| 15 |
1
|
nnrei |
⊢ 𝑁 ∈ ℝ |
| 16 |
9
|
resqcli |
⊢ ( 5 ↑ 2 ) ∈ ℝ |
| 17 |
|
5cn |
⊢ 5 ∈ ℂ |
| 18 |
17
|
sqvali |
⊢ ( 5 ↑ 2 ) = ( 5 · 5 ) |
| 19 |
|
5t5e25 |
⊢ ( 5 · 5 ) = ; 2 5 |
| 20 |
18 19
|
eqtri |
⊢ ( 5 ↑ 2 ) = ; 2 5 |
| 21 |
5 20
|
breqtrri |
⊢ 𝑁 < ( 5 ↑ 2 ) |
| 22 |
|
ltletr |
⊢ ( ( 𝑁 ∈ ℝ ∧ ( 5 ↑ 2 ) ∈ ℝ ∧ ( 𝑥 ↑ 2 ) ∈ ℝ ) → ( ( 𝑁 < ( 5 ↑ 2 ) ∧ ( 5 ↑ 2 ) ≤ ( 𝑥 ↑ 2 ) ) → 𝑁 < ( 𝑥 ↑ 2 ) ) ) |
| 23 |
21 22
|
mpani |
⊢ ( ( 𝑁 ∈ ℝ ∧ ( 5 ↑ 2 ) ∈ ℝ ∧ ( 𝑥 ↑ 2 ) ∈ ℝ ) → ( ( 5 ↑ 2 ) ≤ ( 𝑥 ↑ 2 ) → 𝑁 < ( 𝑥 ↑ 2 ) ) ) |
| 24 |
15 16 23
|
mp3an12 |
⊢ ( ( 𝑥 ↑ 2 ) ∈ ℝ → ( ( 5 ↑ 2 ) ≤ ( 𝑥 ↑ 2 ) → 𝑁 < ( 𝑥 ↑ 2 ) ) ) |
| 25 |
7 14 24
|
sylc |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 5 ) → 𝑁 < ( 𝑥 ↑ 2 ) ) |
| 26 |
|
ltnle |
⊢ ( ( 𝑁 ∈ ℝ ∧ ( 𝑥 ↑ 2 ) ∈ ℝ ) → ( 𝑁 < ( 𝑥 ↑ 2 ) ↔ ¬ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) ) |
| 27 |
15 7 26
|
sylancr |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 5 ) → ( 𝑁 < ( 𝑥 ↑ 2 ) ↔ ¬ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) ) |
| 28 |
25 27
|
mpbid |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 5 ) → ¬ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) |
| 29 |
28
|
pm2.21d |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 5 ) → ( ( 𝑥 ↑ 2 ) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁 ) ) |
| 30 |
29
|
adantld |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 5 ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) |
| 31 |
30
|
adantl |
⊢ ( ( ¬ 2 ∥ 5 ∧ 𝑥 ∈ ( ℤ≥ ‘ 5 ) ) → ( ( 𝑥 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝑥 ↑ 2 ) ≤ 𝑁 ) → ¬ 𝑥 ∥ 𝑁 ) ) |
| 32 |
1 2 3 4 31
|
prmlem1a |
⊢ 𝑁 ∈ ℙ |