Metamath Proof Explorer


Theorem fmtno0

Description: The 0 th Fermat number, see remark in ApostolNT p. 7. (Contributed by AV, 13-Jun-2021)

Ref Expression
Assertion fmtno0 ( FermatNo ‘ 0 ) = 3

Proof

Step Hyp Ref Expression
1 0nn0 0 ∈ ℕ0
2 fmtno ( 0 ∈ ℕ0 → ( FermatNo ‘ 0 ) = ( ( 2 ↑ ( 2 ↑ 0 ) ) + 1 ) )
3 1 2 ax-mp ( FermatNo ‘ 0 ) = ( ( 2 ↑ ( 2 ↑ 0 ) ) + 1 )
4 2cn 2 ∈ ℂ
5 exp0 ( 2 ∈ ℂ → ( 2 ↑ 0 ) = 1 )
6 4 5 ax-mp ( 2 ↑ 0 ) = 1
7 6 oveq2i ( 2 ↑ ( 2 ↑ 0 ) ) = ( 2 ↑ 1 )
8 7 oveq1i ( ( 2 ↑ ( 2 ↑ 0 ) ) + 1 ) = ( ( 2 ↑ 1 ) + 1 )
9 exp1 ( 2 ∈ ℂ → ( 2 ↑ 1 ) = 2 )
10 4 9 ax-mp ( 2 ↑ 1 ) = 2
11 10 oveq1i ( ( 2 ↑ 1 ) + 1 ) = ( 2 + 1 )
12 2p1e3 ( 2 + 1 ) = 3
13 8 11 12 3eqtri ( ( 2 ↑ ( 2 ↑ 0 ) ) + 1 ) = 3
14 3 13 eqtri ( FermatNo ‘ 0 ) = 3