| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 2 |  | fmtno | ⊢ ( 0  ∈  ℕ0  →  ( FermatNo ‘ 0 )  =  ( ( 2 ↑ ( 2 ↑ 0 ) )  +  1 ) ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ ( FermatNo ‘ 0 )  =  ( ( 2 ↑ ( 2 ↑ 0 ) )  +  1 ) | 
						
							| 4 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 5 |  | exp0 | ⊢ ( 2  ∈  ℂ  →  ( 2 ↑ 0 )  =  1 ) | 
						
							| 6 | 4 5 | ax-mp | ⊢ ( 2 ↑ 0 )  =  1 | 
						
							| 7 | 6 | oveq2i | ⊢ ( 2 ↑ ( 2 ↑ 0 ) )  =  ( 2 ↑ 1 ) | 
						
							| 8 | 7 | oveq1i | ⊢ ( ( 2 ↑ ( 2 ↑ 0 ) )  +  1 )  =  ( ( 2 ↑ 1 )  +  1 ) | 
						
							| 9 |  | exp1 | ⊢ ( 2  ∈  ℂ  →  ( 2 ↑ 1 )  =  2 ) | 
						
							| 10 | 4 9 | ax-mp | ⊢ ( 2 ↑ 1 )  =  2 | 
						
							| 11 | 10 | oveq1i | ⊢ ( ( 2 ↑ 1 )  +  1 )  =  ( 2  +  1 ) | 
						
							| 12 |  | 2p1e3 | ⊢ ( 2  +  1 )  =  3 | 
						
							| 13 | 8 11 12 | 3eqtri | ⊢ ( ( 2 ↑ ( 2 ↑ 0 ) )  +  1 )  =  3 | 
						
							| 14 | 3 13 | eqtri | ⊢ ( FermatNo ‘ 0 )  =  3 |