Step |
Hyp |
Ref |
Expression |
1 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
2 |
|
fmtno |
⊢ ( 0 ∈ ℕ0 → ( FermatNo ‘ 0 ) = ( ( 2 ↑ ( 2 ↑ 0 ) ) + 1 ) ) |
3 |
1 2
|
ax-mp |
⊢ ( FermatNo ‘ 0 ) = ( ( 2 ↑ ( 2 ↑ 0 ) ) + 1 ) |
4 |
|
2cn |
⊢ 2 ∈ ℂ |
5 |
|
exp0 |
⊢ ( 2 ∈ ℂ → ( 2 ↑ 0 ) = 1 ) |
6 |
4 5
|
ax-mp |
⊢ ( 2 ↑ 0 ) = 1 |
7 |
6
|
oveq2i |
⊢ ( 2 ↑ ( 2 ↑ 0 ) ) = ( 2 ↑ 1 ) |
8 |
7
|
oveq1i |
⊢ ( ( 2 ↑ ( 2 ↑ 0 ) ) + 1 ) = ( ( 2 ↑ 1 ) + 1 ) |
9 |
|
exp1 |
⊢ ( 2 ∈ ℂ → ( 2 ↑ 1 ) = 2 ) |
10 |
4 9
|
ax-mp |
⊢ ( 2 ↑ 1 ) = 2 |
11 |
10
|
oveq1i |
⊢ ( ( 2 ↑ 1 ) + 1 ) = ( 2 + 1 ) |
12 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
13 |
8 11 12
|
3eqtri |
⊢ ( ( 2 ↑ ( 2 ↑ 0 ) ) + 1 ) = 3 |
14 |
3 13
|
eqtri |
⊢ ( FermatNo ‘ 0 ) = 3 |