| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 2 |  | fmtno |  |-  ( 0 e. NN0 -> ( FermatNo ` 0 ) = ( ( 2 ^ ( 2 ^ 0 ) ) + 1 ) ) | 
						
							| 3 | 1 2 | ax-mp |  |-  ( FermatNo ` 0 ) = ( ( 2 ^ ( 2 ^ 0 ) ) + 1 ) | 
						
							| 4 |  | 2cn |  |-  2 e. CC | 
						
							| 5 |  | exp0 |  |-  ( 2 e. CC -> ( 2 ^ 0 ) = 1 ) | 
						
							| 6 | 4 5 | ax-mp |  |-  ( 2 ^ 0 ) = 1 | 
						
							| 7 | 6 | oveq2i |  |-  ( 2 ^ ( 2 ^ 0 ) ) = ( 2 ^ 1 ) | 
						
							| 8 | 7 | oveq1i |  |-  ( ( 2 ^ ( 2 ^ 0 ) ) + 1 ) = ( ( 2 ^ 1 ) + 1 ) | 
						
							| 9 |  | exp1 |  |-  ( 2 e. CC -> ( 2 ^ 1 ) = 2 ) | 
						
							| 10 | 4 9 | ax-mp |  |-  ( 2 ^ 1 ) = 2 | 
						
							| 11 | 10 | oveq1i |  |-  ( ( 2 ^ 1 ) + 1 ) = ( 2 + 1 ) | 
						
							| 12 |  | 2p1e3 |  |-  ( 2 + 1 ) = 3 | 
						
							| 13 | 8 11 12 | 3eqtri |  |-  ( ( 2 ^ ( 2 ^ 0 ) ) + 1 ) = 3 | 
						
							| 14 | 3 13 | eqtri |  |-  ( FermatNo ` 0 ) = 3 |