Metamath Proof Explorer


Theorem fmtno0

Description: The 0 th Fermat number, see remark in ApostolNT p. 7. (Contributed by AV, 13-Jun-2021)

Ref Expression
Assertion fmtno0
|- ( FermatNo ` 0 ) = 3

Proof

Step Hyp Ref Expression
1 0nn0
 |-  0 e. NN0
2 fmtno
 |-  ( 0 e. NN0 -> ( FermatNo ` 0 ) = ( ( 2 ^ ( 2 ^ 0 ) ) + 1 ) )
3 1 2 ax-mp
 |-  ( FermatNo ` 0 ) = ( ( 2 ^ ( 2 ^ 0 ) ) + 1 )
4 2cn
 |-  2 e. CC
5 exp0
 |-  ( 2 e. CC -> ( 2 ^ 0 ) = 1 )
6 4 5 ax-mp
 |-  ( 2 ^ 0 ) = 1
7 6 oveq2i
 |-  ( 2 ^ ( 2 ^ 0 ) ) = ( 2 ^ 1 )
8 7 oveq1i
 |-  ( ( 2 ^ ( 2 ^ 0 ) ) + 1 ) = ( ( 2 ^ 1 ) + 1 )
9 exp1
 |-  ( 2 e. CC -> ( 2 ^ 1 ) = 2 )
10 4 9 ax-mp
 |-  ( 2 ^ 1 ) = 2
11 10 oveq1i
 |-  ( ( 2 ^ 1 ) + 1 ) = ( 2 + 1 )
12 2p1e3
 |-  ( 2 + 1 ) = 3
13 8 11 12 3eqtri
 |-  ( ( 2 ^ ( 2 ^ 0 ) ) + 1 ) = 3
14 3 13 eqtri
 |-  ( FermatNo ` 0 ) = 3