Metamath Proof Explorer


Theorem goldbachth

Description: Goldbach's theorem: Two different Fermat numbers are coprime. See ProofWiki "Goldbach's theorem", 31-Jul-2021, https://proofwiki.org/wiki/Goldbach%27s_Theorem or Wikipedia "Fermat number", 31-Jul-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties . (Contributed by AV, 1-Aug-2021)

Ref Expression
Assertion goldbachth N 0 M 0 N M FermatNo N gcd FermatNo M = 1

Proof

Step Hyp Ref Expression
1 nn0re N 0 N
2 nn0re M 0 M
3 lttri4 N M N < M N = M M < N
4 1 2 3 syl2an N 0 M 0 N < M N = M M < N
5 4 3adant3 N 0 M 0 N M N < M N = M M < N
6 fmtnonn N 0 FermatNo N
7 6 nnzd N 0 FermatNo N
8 fmtnonn M 0 FermatNo M
9 8 nnzd M 0 FermatNo M
10 gcdcom FermatNo N FermatNo M FermatNo N gcd FermatNo M = FermatNo M gcd FermatNo N
11 7 9 10 syl2anr M 0 N 0 FermatNo N gcd FermatNo M = FermatNo M gcd FermatNo N
12 11 3adant3 M 0 N 0 N < M FermatNo N gcd FermatNo M = FermatNo M gcd FermatNo N
13 goldbachthlem2 M 0 N 0 N < M FermatNo M gcd FermatNo N = 1
14 12 13 eqtrd M 0 N 0 N < M FermatNo N gcd FermatNo M = 1
15 14 3exp M 0 N 0 N < M FermatNo N gcd FermatNo M = 1
16 15 impcom N 0 M 0 N < M FermatNo N gcd FermatNo M = 1
17 16 3adant3 N 0 M 0 N M N < M FermatNo N gcd FermatNo M = 1
18 eqneqall N = M N M FermatNo N gcd FermatNo M = 1
19 18 com12 N M N = M FermatNo N gcd FermatNo M = 1
20 19 3ad2ant3 N 0 M 0 N M N = M FermatNo N gcd FermatNo M = 1
21 goldbachthlem2 N 0 M 0 M < N FermatNo N gcd FermatNo M = 1
22 21 3expia N 0 M 0 M < N FermatNo N gcd FermatNo M = 1
23 22 3adant3 N 0 M 0 N M M < N FermatNo N gcd FermatNo M = 1
24 17 20 23 3jaod N 0 M 0 N M N < M N = M M < N FermatNo N gcd FermatNo M = 1
25 5 24 mpd N 0 M 0 N M FermatNo N gcd FermatNo M = 1