| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0re |  | 
						
							| 2 |  | nn0re |  | 
						
							| 3 |  | lttri4 |  | 
						
							| 4 | 1 2 3 | syl2an |  | 
						
							| 5 | 4 | 3adant3 |  | 
						
							| 6 |  | fmtnonn |  | 
						
							| 7 | 6 | nnzd |  | 
						
							| 8 |  | fmtnonn |  | 
						
							| 9 | 8 | nnzd |  | 
						
							| 10 |  | gcdcom |  | 
						
							| 11 | 7 9 10 | syl2anr |  | 
						
							| 12 | 11 | 3adant3 |  | 
						
							| 13 |  | goldbachthlem2 |  | 
						
							| 14 | 12 13 | eqtrd |  | 
						
							| 15 | 14 | 3exp |  | 
						
							| 16 | 15 | impcom |  | 
						
							| 17 | 16 | 3adant3 |  | 
						
							| 18 |  | eqneqall |  | 
						
							| 19 | 18 | com12 |  | 
						
							| 20 | 19 | 3ad2ant3 |  | 
						
							| 21 |  | goldbachthlem2 |  | 
						
							| 22 | 21 | 3expia |  | 
						
							| 23 | 22 | 3adant3 |  | 
						
							| 24 | 17 20 23 | 3jaod |  | 
						
							| 25 | 5 24 | mpd |  |