Metamath Proof Explorer


Theorem fmtnof1

Description: The enumeration of the Fermat numbers is a one-one function into the positive integers. (Contributed by AV, 3-Aug-2021)

Ref Expression
Assertion fmtnof1 FermatNo:01-1

Proof

Step Hyp Ref Expression
1 df-fmtno FermatNo=n022n+1
2 2nn 2
3 2 a1i n02
4 2nn0 20
5 4 a1i n020
6 id n0n0
7 5 6 nn0expcld n02n0
8 3 7 nnexpcld n022n
9 8 peano2nnd n022n+1
10 1 9 fmpti FermatNo:0
11 fmtno n0FermatNon=22n+1
12 fmtno m0FermatNom=22m+1
13 11 12 eqeqan12d n0m0FermatNon=FermatNom22n+1=22m+1
14 5 7 nn0expcld n022n0
15 14 nn0cnd n022n
16 15 adantr n0m022n
17 4 a1i m020
18 id m0m0
19 17 18 nn0expcld m02m0
20 17 19 nn0expcld m022m0
21 20 nn0cnd m022m
22 21 adantl n0m022m
23 1cnd n0m01
24 16 22 23 addcan2d n0m022n+1=22m+122n=22m
25 2re 2
26 25 a1i n0m02
27 7 nn0zd n02n
28 27 adantr n0m02n
29 19 nn0zd m02m
30 29 adantl n0m02m
31 1lt2 1<2
32 31 a1i n0m01<2
33 expcan 22n2m1<222n=22m2n=2m
34 26 28 30 32 33 syl31anc n0m022n=22m2n=2m
35 24 34 bitrd n0m022n+1=22m+12n=2m
36 nn0z n0n
37 36 adantr n0m0n
38 nn0z m0m
39 38 adantl n0m0m
40 expcan 2nm1<22n=2mn=m
41 40 biimpd 2nm1<22n=2mn=m
42 26 37 39 32 41 syl31anc n0m02n=2mn=m
43 35 42 sylbid n0m022n+1=22m+1n=m
44 13 43 sylbid n0m0FermatNon=FermatNomn=m
45 44 rgen2 n0m0FermatNon=FermatNomn=m
46 dff13 FermatNo:01-1FermatNo:0n0m0FermatNon=FermatNomn=m
47 10 45 46 mpbir2an FermatNo:01-1