Metamath Proof Explorer


Theorem fmtnof1

Description: The enumeration of the Fermat numbers is a one-one function into the positive integers. (Contributed by AV, 3-Aug-2021)

Ref Expression
Assertion fmtnof1 FermatNo : 0 1-1

Proof

Step Hyp Ref Expression
1 df-fmtno FermatNo = n 0 2 2 n + 1
2 2nn 2
3 2 a1i n 0 2
4 2nn0 2 0
5 4 a1i n 0 2 0
6 id n 0 n 0
7 5 6 nn0expcld n 0 2 n 0
8 3 7 nnexpcld n 0 2 2 n
9 8 peano2nnd n 0 2 2 n + 1
10 1 9 fmpti FermatNo : 0
11 fmtno n 0 FermatNo n = 2 2 n + 1
12 fmtno m 0 FermatNo m = 2 2 m + 1
13 11 12 eqeqan12d n 0 m 0 FermatNo n = FermatNo m 2 2 n + 1 = 2 2 m + 1
14 5 7 nn0expcld n 0 2 2 n 0
15 14 nn0cnd n 0 2 2 n
16 15 adantr n 0 m 0 2 2 n
17 4 a1i m 0 2 0
18 id m 0 m 0
19 17 18 nn0expcld m 0 2 m 0
20 17 19 nn0expcld m 0 2 2 m 0
21 20 nn0cnd m 0 2 2 m
22 21 adantl n 0 m 0 2 2 m
23 1cnd n 0 m 0 1
24 16 22 23 addcan2d n 0 m 0 2 2 n + 1 = 2 2 m + 1 2 2 n = 2 2 m
25 2re 2
26 25 a1i n 0 m 0 2
27 7 nn0zd n 0 2 n
28 27 adantr n 0 m 0 2 n
29 19 nn0zd m 0 2 m
30 29 adantl n 0 m 0 2 m
31 1lt2 1 < 2
32 31 a1i n 0 m 0 1 < 2
33 expcan 2 2 n 2 m 1 < 2 2 2 n = 2 2 m 2 n = 2 m
34 26 28 30 32 33 syl31anc n 0 m 0 2 2 n = 2 2 m 2 n = 2 m
35 24 34 bitrd n 0 m 0 2 2 n + 1 = 2 2 m + 1 2 n = 2 m
36 nn0z n 0 n
37 36 adantr n 0 m 0 n
38 nn0z m 0 m
39 38 adantl n 0 m 0 m
40 expcan 2 n m 1 < 2 2 n = 2 m n = m
41 40 biimpd 2 n m 1 < 2 2 n = 2 m n = m
42 26 37 39 32 41 syl31anc n 0 m 0 2 n = 2 m n = m
43 35 42 sylbid n 0 m 0 2 2 n + 1 = 2 2 m + 1 n = m
44 13 43 sylbid n 0 m 0 FermatNo n = FermatNo m n = m
45 44 rgen2 n 0 m 0 FermatNo n = FermatNo m n = m
46 dff13 FermatNo : 0 1-1 FermatNo : 0 n 0 m 0 FermatNo n = FermatNo m n = m
47 10 45 46 mpbir2an FermatNo : 0 1-1