Metamath Proof Explorer


Theorem fmtnosqrt

Description: The floor of the square root of a Fermat number. (Contributed by AV, 28-Jul-2021)

Ref Expression
Assertion fmtnosqrt N FermatNo N = 2 2 N 1

Proof

Step Hyp Ref Expression
1 nnnn0 N N 0
2 fmtno N 0 FermatNo N = 2 2 N + 1
3 1 2 syl N FermatNo N = 2 2 N + 1
4 3 fveq2d N FermatNo N = 2 2 N + 1
5 4 fveq2d N FermatNo N = 2 2 N + 1
6 id N N
7 1nn0 1 0
8 7 a1i N 1 0
9 2nn 2
10 9 a1i N 2
11 2nn0 2 0
12 11 a1i N 2 0
13 nnm1nn0 N N 1 0
14 12 13 nn0expcld N 2 N 1 0
15 peano2nn0 2 N 1 0 2 N 1 + 1 0
16 14 15 syl N 2 N 1 + 1 0
17 10 16 nnexpcld N 2 2 N 1 + 1
18 nngt0 2 2 N 1 + 1 0 < 2 2 N 1 + 1
19 17 18 syl N 0 < 2 2 N 1 + 1
20 12 16 nn0expcld N 2 2 N 1 + 1 0
21 20 nn0red N 2 2 N 1 + 1
22 1re 1
23 22 a1i N 1
24 21 23 jca N 2 2 N 1 + 1 1
25 ltaddpos2 2 2 N 1 + 1 1 0 < 2 2 N 1 + 1 1 < 2 2 N 1 + 1 + 1
26 24 25 syl N 0 < 2 2 N 1 + 1 1 < 2 2 N 1 + 1 + 1
27 19 26 mpbid N 1 < 2 2 N 1 + 1 + 1
28 6 8 27 3jca N N 1 0 1 < 2 2 N 1 + 1 + 1
29 sqrtpwpw2p N 1 0 1 < 2 2 N 1 + 1 + 1 2 2 N + 1 = 2 2 N 1
30 28 29 syl N 2 2 N + 1 = 2 2 N 1
31 5 30 eqtrd N FermatNo N = 2 2 N 1