Step |
Hyp |
Ref |
Expression |
1 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
2 |
|
fmtno |
|- ( N e. NN0 -> ( FermatNo ` N ) = ( ( 2 ^ ( 2 ^ N ) ) + 1 ) ) |
3 |
1 2
|
syl |
|- ( N e. NN -> ( FermatNo ` N ) = ( ( 2 ^ ( 2 ^ N ) ) + 1 ) ) |
4 |
3
|
fveq2d |
|- ( N e. NN -> ( sqrt ` ( FermatNo ` N ) ) = ( sqrt ` ( ( 2 ^ ( 2 ^ N ) ) + 1 ) ) ) |
5 |
4
|
fveq2d |
|- ( N e. NN -> ( |_ ` ( sqrt ` ( FermatNo ` N ) ) ) = ( |_ ` ( sqrt ` ( ( 2 ^ ( 2 ^ N ) ) + 1 ) ) ) ) |
6 |
|
id |
|- ( N e. NN -> N e. NN ) |
7 |
|
1nn0 |
|- 1 e. NN0 |
8 |
7
|
a1i |
|- ( N e. NN -> 1 e. NN0 ) |
9 |
|
2nn |
|- 2 e. NN |
10 |
9
|
a1i |
|- ( N e. NN -> 2 e. NN ) |
11 |
|
2nn0 |
|- 2 e. NN0 |
12 |
11
|
a1i |
|- ( N e. NN -> 2 e. NN0 ) |
13 |
|
nnm1nn0 |
|- ( N e. NN -> ( N - 1 ) e. NN0 ) |
14 |
12 13
|
nn0expcld |
|- ( N e. NN -> ( 2 ^ ( N - 1 ) ) e. NN0 ) |
15 |
|
peano2nn0 |
|- ( ( 2 ^ ( N - 1 ) ) e. NN0 -> ( ( 2 ^ ( N - 1 ) ) + 1 ) e. NN0 ) |
16 |
14 15
|
syl |
|- ( N e. NN -> ( ( 2 ^ ( N - 1 ) ) + 1 ) e. NN0 ) |
17 |
10 16
|
nnexpcld |
|- ( N e. NN -> ( 2 ^ ( ( 2 ^ ( N - 1 ) ) + 1 ) ) e. NN ) |
18 |
|
nngt0 |
|- ( ( 2 ^ ( ( 2 ^ ( N - 1 ) ) + 1 ) ) e. NN -> 0 < ( 2 ^ ( ( 2 ^ ( N - 1 ) ) + 1 ) ) ) |
19 |
17 18
|
syl |
|- ( N e. NN -> 0 < ( 2 ^ ( ( 2 ^ ( N - 1 ) ) + 1 ) ) ) |
20 |
12 16
|
nn0expcld |
|- ( N e. NN -> ( 2 ^ ( ( 2 ^ ( N - 1 ) ) + 1 ) ) e. NN0 ) |
21 |
20
|
nn0red |
|- ( N e. NN -> ( 2 ^ ( ( 2 ^ ( N - 1 ) ) + 1 ) ) e. RR ) |
22 |
|
1re |
|- 1 e. RR |
23 |
22
|
a1i |
|- ( N e. NN -> 1 e. RR ) |
24 |
21 23
|
jca |
|- ( N e. NN -> ( ( 2 ^ ( ( 2 ^ ( N - 1 ) ) + 1 ) ) e. RR /\ 1 e. RR ) ) |
25 |
|
ltaddpos2 |
|- ( ( ( 2 ^ ( ( 2 ^ ( N - 1 ) ) + 1 ) ) e. RR /\ 1 e. RR ) -> ( 0 < ( 2 ^ ( ( 2 ^ ( N - 1 ) ) + 1 ) ) <-> 1 < ( ( 2 ^ ( ( 2 ^ ( N - 1 ) ) + 1 ) ) + 1 ) ) ) |
26 |
24 25
|
syl |
|- ( N e. NN -> ( 0 < ( 2 ^ ( ( 2 ^ ( N - 1 ) ) + 1 ) ) <-> 1 < ( ( 2 ^ ( ( 2 ^ ( N - 1 ) ) + 1 ) ) + 1 ) ) ) |
27 |
19 26
|
mpbid |
|- ( N e. NN -> 1 < ( ( 2 ^ ( ( 2 ^ ( N - 1 ) ) + 1 ) ) + 1 ) ) |
28 |
6 8 27
|
3jca |
|- ( N e. NN -> ( N e. NN /\ 1 e. NN0 /\ 1 < ( ( 2 ^ ( ( 2 ^ ( N - 1 ) ) + 1 ) ) + 1 ) ) ) |
29 |
|
sqrtpwpw2p |
|- ( ( N e. NN /\ 1 e. NN0 /\ 1 < ( ( 2 ^ ( ( 2 ^ ( N - 1 ) ) + 1 ) ) + 1 ) ) -> ( |_ ` ( sqrt ` ( ( 2 ^ ( 2 ^ N ) ) + 1 ) ) ) = ( 2 ^ ( 2 ^ ( N - 1 ) ) ) ) |
30 |
28 29
|
syl |
|- ( N e. NN -> ( |_ ` ( sqrt ` ( ( 2 ^ ( 2 ^ N ) ) + 1 ) ) ) = ( 2 ^ ( 2 ^ ( N - 1 ) ) ) ) |
31 |
5 30
|
eqtrd |
|- ( N e. NN -> ( |_ ` ( sqrt ` ( FermatNo ` N ) ) ) = ( 2 ^ ( 2 ^ ( N - 1 ) ) ) ) |