| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnnn0 |  |-  ( N e. NN -> N e. NN0 ) | 
						
							| 2 |  | fmtno |  |-  ( N e. NN0 -> ( FermatNo ` N ) = ( ( 2 ^ ( 2 ^ N ) ) + 1 ) ) | 
						
							| 3 | 1 2 | syl |  |-  ( N e. NN -> ( FermatNo ` N ) = ( ( 2 ^ ( 2 ^ N ) ) + 1 ) ) | 
						
							| 4 | 3 | fveq2d |  |-  ( N e. NN -> ( sqrt ` ( FermatNo ` N ) ) = ( sqrt ` ( ( 2 ^ ( 2 ^ N ) ) + 1 ) ) ) | 
						
							| 5 | 4 | fveq2d |  |-  ( N e. NN -> ( |_ ` ( sqrt ` ( FermatNo ` N ) ) ) = ( |_ ` ( sqrt ` ( ( 2 ^ ( 2 ^ N ) ) + 1 ) ) ) ) | 
						
							| 6 |  | id |  |-  ( N e. NN -> N e. NN ) | 
						
							| 7 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 8 | 7 | a1i |  |-  ( N e. NN -> 1 e. NN0 ) | 
						
							| 9 |  | 2nn |  |-  2 e. NN | 
						
							| 10 | 9 | a1i |  |-  ( N e. NN -> 2 e. NN ) | 
						
							| 11 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 12 | 11 | a1i |  |-  ( N e. NN -> 2 e. NN0 ) | 
						
							| 13 |  | nnm1nn0 |  |-  ( N e. NN -> ( N - 1 ) e. NN0 ) | 
						
							| 14 | 12 13 | nn0expcld |  |-  ( N e. NN -> ( 2 ^ ( N - 1 ) ) e. NN0 ) | 
						
							| 15 |  | peano2nn0 |  |-  ( ( 2 ^ ( N - 1 ) ) e. NN0 -> ( ( 2 ^ ( N - 1 ) ) + 1 ) e. NN0 ) | 
						
							| 16 | 14 15 | syl |  |-  ( N e. NN -> ( ( 2 ^ ( N - 1 ) ) + 1 ) e. NN0 ) | 
						
							| 17 | 10 16 | nnexpcld |  |-  ( N e. NN -> ( 2 ^ ( ( 2 ^ ( N - 1 ) ) + 1 ) ) e. NN ) | 
						
							| 18 |  | nngt0 |  |-  ( ( 2 ^ ( ( 2 ^ ( N - 1 ) ) + 1 ) ) e. NN -> 0 < ( 2 ^ ( ( 2 ^ ( N - 1 ) ) + 1 ) ) ) | 
						
							| 19 | 17 18 | syl |  |-  ( N e. NN -> 0 < ( 2 ^ ( ( 2 ^ ( N - 1 ) ) + 1 ) ) ) | 
						
							| 20 | 12 16 | nn0expcld |  |-  ( N e. NN -> ( 2 ^ ( ( 2 ^ ( N - 1 ) ) + 1 ) ) e. NN0 ) | 
						
							| 21 | 20 | nn0red |  |-  ( N e. NN -> ( 2 ^ ( ( 2 ^ ( N - 1 ) ) + 1 ) ) e. RR ) | 
						
							| 22 |  | 1re |  |-  1 e. RR | 
						
							| 23 | 22 | a1i |  |-  ( N e. NN -> 1 e. RR ) | 
						
							| 24 | 21 23 | jca |  |-  ( N e. NN -> ( ( 2 ^ ( ( 2 ^ ( N - 1 ) ) + 1 ) ) e. RR /\ 1 e. RR ) ) | 
						
							| 25 |  | ltaddpos2 |  |-  ( ( ( 2 ^ ( ( 2 ^ ( N - 1 ) ) + 1 ) ) e. RR /\ 1 e. RR ) -> ( 0 < ( 2 ^ ( ( 2 ^ ( N - 1 ) ) + 1 ) ) <-> 1 < ( ( 2 ^ ( ( 2 ^ ( N - 1 ) ) + 1 ) ) + 1 ) ) ) | 
						
							| 26 | 24 25 | syl |  |-  ( N e. NN -> ( 0 < ( 2 ^ ( ( 2 ^ ( N - 1 ) ) + 1 ) ) <-> 1 < ( ( 2 ^ ( ( 2 ^ ( N - 1 ) ) + 1 ) ) + 1 ) ) ) | 
						
							| 27 | 19 26 | mpbid |  |-  ( N e. NN -> 1 < ( ( 2 ^ ( ( 2 ^ ( N - 1 ) ) + 1 ) ) + 1 ) ) | 
						
							| 28 | 6 8 27 | 3jca |  |-  ( N e. NN -> ( N e. NN /\ 1 e. NN0 /\ 1 < ( ( 2 ^ ( ( 2 ^ ( N - 1 ) ) + 1 ) ) + 1 ) ) ) | 
						
							| 29 |  | sqrtpwpw2p |  |-  ( ( N e. NN /\ 1 e. NN0 /\ 1 < ( ( 2 ^ ( ( 2 ^ ( N - 1 ) ) + 1 ) ) + 1 ) ) -> ( |_ ` ( sqrt ` ( ( 2 ^ ( 2 ^ N ) ) + 1 ) ) ) = ( 2 ^ ( 2 ^ ( N - 1 ) ) ) ) | 
						
							| 30 | 28 29 | syl |  |-  ( N e. NN -> ( |_ ` ( sqrt ` ( ( 2 ^ ( 2 ^ N ) ) + 1 ) ) ) = ( 2 ^ ( 2 ^ ( N - 1 ) ) ) ) | 
						
							| 31 | 5 30 | eqtrd |  |-  ( N e. NN -> ( |_ ` ( sqrt ` ( FermatNo ` N ) ) ) = ( 2 ^ ( 2 ^ ( N - 1 ) ) ) ) |