| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnnn0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ0 ) | 
						
							| 2 |  | fmtno | ⊢ ( 𝑁  ∈  ℕ0  →  ( FermatNo ‘ 𝑁 )  =  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝑁  ∈  ℕ  →  ( FermatNo ‘ 𝑁 )  =  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 ) ) | 
						
							| 4 | 3 | fveq2d | ⊢ ( 𝑁  ∈  ℕ  →  ( √ ‘ ( FermatNo ‘ 𝑁 ) )  =  ( √ ‘ ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 ) ) ) | 
						
							| 5 | 4 | fveq2d | ⊢ ( 𝑁  ∈  ℕ  →  ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 𝑁 ) ) )  =  ( ⌊ ‘ ( √ ‘ ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 ) ) ) ) | 
						
							| 6 |  | id | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ ) | 
						
							| 7 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 8 | 7 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  1  ∈  ℕ0 ) | 
						
							| 9 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 10 | 9 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  2  ∈  ℕ ) | 
						
							| 11 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 12 | 11 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  2  ∈  ℕ0 ) | 
						
							| 13 |  | nnm1nn0 | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  −  1 )  ∈  ℕ0 ) | 
						
							| 14 | 12 13 | nn0expcld | ⊢ ( 𝑁  ∈  ℕ  →  ( 2 ↑ ( 𝑁  −  1 ) )  ∈  ℕ0 ) | 
						
							| 15 |  | peano2nn0 | ⊢ ( ( 2 ↑ ( 𝑁  −  1 ) )  ∈  ℕ0  →  ( ( 2 ↑ ( 𝑁  −  1 ) )  +  1 )  ∈  ℕ0 ) | 
						
							| 16 | 14 15 | syl | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 2 ↑ ( 𝑁  −  1 ) )  +  1 )  ∈  ℕ0 ) | 
						
							| 17 | 10 16 | nnexpcld | ⊢ ( 𝑁  ∈  ℕ  →  ( 2 ↑ ( ( 2 ↑ ( 𝑁  −  1 ) )  +  1 ) )  ∈  ℕ ) | 
						
							| 18 |  | nngt0 | ⊢ ( ( 2 ↑ ( ( 2 ↑ ( 𝑁  −  1 ) )  +  1 ) )  ∈  ℕ  →  0  <  ( 2 ↑ ( ( 2 ↑ ( 𝑁  −  1 ) )  +  1 ) ) ) | 
						
							| 19 | 17 18 | syl | ⊢ ( 𝑁  ∈  ℕ  →  0  <  ( 2 ↑ ( ( 2 ↑ ( 𝑁  −  1 ) )  +  1 ) ) ) | 
						
							| 20 | 12 16 | nn0expcld | ⊢ ( 𝑁  ∈  ℕ  →  ( 2 ↑ ( ( 2 ↑ ( 𝑁  −  1 ) )  +  1 ) )  ∈  ℕ0 ) | 
						
							| 21 | 20 | nn0red | ⊢ ( 𝑁  ∈  ℕ  →  ( 2 ↑ ( ( 2 ↑ ( 𝑁  −  1 ) )  +  1 ) )  ∈  ℝ ) | 
						
							| 22 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 23 | 22 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  1  ∈  ℝ ) | 
						
							| 24 | 21 23 | jca | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 2 ↑ ( ( 2 ↑ ( 𝑁  −  1 ) )  +  1 ) )  ∈  ℝ  ∧  1  ∈  ℝ ) ) | 
						
							| 25 |  | ltaddpos2 | ⊢ ( ( ( 2 ↑ ( ( 2 ↑ ( 𝑁  −  1 ) )  +  1 ) )  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( 0  <  ( 2 ↑ ( ( 2 ↑ ( 𝑁  −  1 ) )  +  1 ) )  ↔  1  <  ( ( 2 ↑ ( ( 2 ↑ ( 𝑁  −  1 ) )  +  1 ) )  +  1 ) ) ) | 
						
							| 26 | 24 25 | syl | ⊢ ( 𝑁  ∈  ℕ  →  ( 0  <  ( 2 ↑ ( ( 2 ↑ ( 𝑁  −  1 ) )  +  1 ) )  ↔  1  <  ( ( 2 ↑ ( ( 2 ↑ ( 𝑁  −  1 ) )  +  1 ) )  +  1 ) ) ) | 
						
							| 27 | 19 26 | mpbid | ⊢ ( 𝑁  ∈  ℕ  →  1  <  ( ( 2 ↑ ( ( 2 ↑ ( 𝑁  −  1 ) )  +  1 ) )  +  1 ) ) | 
						
							| 28 | 6 8 27 | 3jca | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  ∈  ℕ  ∧  1  ∈  ℕ0  ∧  1  <  ( ( 2 ↑ ( ( 2 ↑ ( 𝑁  −  1 ) )  +  1 ) )  +  1 ) ) ) | 
						
							| 29 |  | sqrtpwpw2p | ⊢ ( ( 𝑁  ∈  ℕ  ∧  1  ∈  ℕ0  ∧  1  <  ( ( 2 ↑ ( ( 2 ↑ ( 𝑁  −  1 ) )  +  1 ) )  +  1 ) )  →  ( ⌊ ‘ ( √ ‘ ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 ) ) )  =  ( 2 ↑ ( 2 ↑ ( 𝑁  −  1 ) ) ) ) | 
						
							| 30 | 28 29 | syl | ⊢ ( 𝑁  ∈  ℕ  →  ( ⌊ ‘ ( √ ‘ ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 ) ) )  =  ( 2 ↑ ( 2 ↑ ( 𝑁  −  1 ) ) ) ) | 
						
							| 31 | 5 30 | eqtrd | ⊢ ( 𝑁  ∈  ℕ  →  ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 𝑁 ) ) )  =  ( 2 ↑ ( 2 ↑ ( 𝑁  −  1 ) ) ) ) |