| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
| 2 |
|
fmtno |
⊢ ( 𝑁 ∈ ℕ0 → ( FermatNo ‘ 𝑁 ) = ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) ) |
| 3 |
1 2
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( FermatNo ‘ 𝑁 ) = ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) ) |
| 4 |
3
|
fveq2d |
⊢ ( 𝑁 ∈ ℕ → ( √ ‘ ( FermatNo ‘ 𝑁 ) ) = ( √ ‘ ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) ) ) |
| 5 |
4
|
fveq2d |
⊢ ( 𝑁 ∈ ℕ → ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 𝑁 ) ) ) = ( ⌊ ‘ ( √ ‘ ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) ) ) ) |
| 6 |
|
id |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ ) |
| 7 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 8 |
7
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℕ0 ) |
| 9 |
|
2nn |
⊢ 2 ∈ ℕ |
| 10 |
9
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℕ ) |
| 11 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 12 |
11
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℕ0 ) |
| 13 |
|
nnm1nn0 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 ) |
| 14 |
12 13
|
nn0expcld |
⊢ ( 𝑁 ∈ ℕ → ( 2 ↑ ( 𝑁 − 1 ) ) ∈ ℕ0 ) |
| 15 |
|
peano2nn0 |
⊢ ( ( 2 ↑ ( 𝑁 − 1 ) ) ∈ ℕ0 → ( ( 2 ↑ ( 𝑁 − 1 ) ) + 1 ) ∈ ℕ0 ) |
| 16 |
14 15
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( ( 2 ↑ ( 𝑁 − 1 ) ) + 1 ) ∈ ℕ0 ) |
| 17 |
10 16
|
nnexpcld |
⊢ ( 𝑁 ∈ ℕ → ( 2 ↑ ( ( 2 ↑ ( 𝑁 − 1 ) ) + 1 ) ) ∈ ℕ ) |
| 18 |
|
nngt0 |
⊢ ( ( 2 ↑ ( ( 2 ↑ ( 𝑁 − 1 ) ) + 1 ) ) ∈ ℕ → 0 < ( 2 ↑ ( ( 2 ↑ ( 𝑁 − 1 ) ) + 1 ) ) ) |
| 19 |
17 18
|
syl |
⊢ ( 𝑁 ∈ ℕ → 0 < ( 2 ↑ ( ( 2 ↑ ( 𝑁 − 1 ) ) + 1 ) ) ) |
| 20 |
12 16
|
nn0expcld |
⊢ ( 𝑁 ∈ ℕ → ( 2 ↑ ( ( 2 ↑ ( 𝑁 − 1 ) ) + 1 ) ) ∈ ℕ0 ) |
| 21 |
20
|
nn0red |
⊢ ( 𝑁 ∈ ℕ → ( 2 ↑ ( ( 2 ↑ ( 𝑁 − 1 ) ) + 1 ) ) ∈ ℝ ) |
| 22 |
|
1re |
⊢ 1 ∈ ℝ |
| 23 |
22
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℝ ) |
| 24 |
21 23
|
jca |
⊢ ( 𝑁 ∈ ℕ → ( ( 2 ↑ ( ( 2 ↑ ( 𝑁 − 1 ) ) + 1 ) ) ∈ ℝ ∧ 1 ∈ ℝ ) ) |
| 25 |
|
ltaddpos2 |
⊢ ( ( ( 2 ↑ ( ( 2 ↑ ( 𝑁 − 1 ) ) + 1 ) ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( 0 < ( 2 ↑ ( ( 2 ↑ ( 𝑁 − 1 ) ) + 1 ) ) ↔ 1 < ( ( 2 ↑ ( ( 2 ↑ ( 𝑁 − 1 ) ) + 1 ) ) + 1 ) ) ) |
| 26 |
24 25
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( 0 < ( 2 ↑ ( ( 2 ↑ ( 𝑁 − 1 ) ) + 1 ) ) ↔ 1 < ( ( 2 ↑ ( ( 2 ↑ ( 𝑁 − 1 ) ) + 1 ) ) + 1 ) ) ) |
| 27 |
19 26
|
mpbid |
⊢ ( 𝑁 ∈ ℕ → 1 < ( ( 2 ↑ ( ( 2 ↑ ( 𝑁 − 1 ) ) + 1 ) ) + 1 ) ) |
| 28 |
6 8 27
|
3jca |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ∈ ℕ ∧ 1 ∈ ℕ0 ∧ 1 < ( ( 2 ↑ ( ( 2 ↑ ( 𝑁 − 1 ) ) + 1 ) ) + 1 ) ) ) |
| 29 |
|
sqrtpwpw2p |
⊢ ( ( 𝑁 ∈ ℕ ∧ 1 ∈ ℕ0 ∧ 1 < ( ( 2 ↑ ( ( 2 ↑ ( 𝑁 − 1 ) ) + 1 ) ) + 1 ) ) → ( ⌊ ‘ ( √ ‘ ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) ) ) = ( 2 ↑ ( 2 ↑ ( 𝑁 − 1 ) ) ) ) |
| 30 |
28 29
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( ⌊ ‘ ( √ ‘ ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) ) ) = ( 2 ↑ ( 2 ↑ ( 𝑁 − 1 ) ) ) ) |
| 31 |
5 30
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( ⌊ ‘ ( √ ‘ ( FermatNo ‘ 𝑁 ) ) ) = ( 2 ↑ ( 2 ↑ ( 𝑁 − 1 ) ) ) ) |