Metamath Proof Explorer


Theorem prminf2

Description: The set of prime numbers is infinite. The proof of this variant of prminf is based on Goldbach's theorem goldbachth (via prmdvdsfmtnof1 and prmdvdsfmtnof1lem2 ), see Wikipedia "Fermat number", 4-Aug-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties . (Contributed by AV, 4-Aug-2021)

Ref Expression
Assertion prminf2 Fin

Proof

Step Hyp Ref Expression
1 eqid f ran FermatNo sup p | p f < = f ran FermatNo sup p | p f <
2 1 prmdvdsfmtnof1 f ran FermatNo sup p | p f < : ran FermatNo 1-1
3 ax-1 Fin f ran FermatNo sup p | p f < : ran FermatNo 1-1 Fin
4 nnel ¬ Fin Fin
5 fmtnoinf ran FermatNo Fin
6 f1fi Fin f ran FermatNo sup p | p f < : ran FermatNo 1-1 ran FermatNo Fin
7 df-nel ran FermatNo Fin ¬ ran FermatNo Fin
8 pm2.21 ¬ ran FermatNo Fin ran FermatNo Fin Fin
9 7 8 sylbi ran FermatNo Fin ran FermatNo Fin Fin
10 5 6 9 mpsyl Fin f ran FermatNo sup p | p f < : ran FermatNo 1-1 Fin
11 10 ex Fin f ran FermatNo sup p | p f < : ran FermatNo 1-1 Fin
12 4 11 sylbi ¬ Fin f ran FermatNo sup p | p f < : ran FermatNo 1-1 Fin
13 3 12 pm2.61i f ran FermatNo sup p | p f < : ran FermatNo 1-1 Fin
14 2 13 ax-mp Fin