Metamath Proof Explorer


Theorem fmtno5lem2

Description: Lemma 2 for fmtno5 . (Contributed by AV, 22-Jul-2021)

Ref Expression
Assertion fmtno5lem2 65536 5 = 327680

Proof

Step Hyp Ref Expression
1 5nn0 5 0
2 6nn0 6 0
3 2 1 deccl 65 0
4 3 1 deccl 655 0
5 3nn0 3 0
6 4 5 deccl 6553 0
7 eqid 65536 = 65536
8 0nn0 0 0
9 2nn0 2 0
10 5 9 deccl 32 0
11 7nn0 7 0
12 10 11 deccl 327 0
13 12 2 deccl 3276 0
14 eqid 6553 = 6553
15 1nn0 1 0
16 5p1e6 5 + 1 = 6
17 eqid 655 = 655
18 eqid 65 = 65
19 6t5e30 6 5 = 30
20 2cn 2
21 20 addid2i 0 + 2 = 2
22 5 8 9 19 21 decaddi 6 5 + 2 = 32
23 5t5e25 5 5 = 25
24 1 2 1 18 1 9 22 23 decmul1c 65 5 = 325
25 5p2e7 5 + 2 = 7
26 10 1 9 24 25 decaddi 65 5 + 2 = 327
27 1 3 1 17 1 9 26 23 decmul1c 655 5 = 3275
28 12 1 16 27 decsuc 655 5 + 1 = 3276
29 5cn 5
30 3cn 3
31 5t3e15 5 3 = 15
32 29 30 31 mulcomli 3 5 = 15
33 1 4 5 14 1 15 28 32 decmul1c 6553 5 = 32765
34 5p3e8 5 + 3 = 8
35 13 1 5 33 34 decaddi 6553 5 + 3 = 32768
36 1 6 2 7 8 5 35 19 decmul1c 65536 5 = 327680