Metamath Proof Explorer


Theorem fmtno5lem2

Description: Lemma 2 for fmtno5 . (Contributed by AV, 22-Jul-2021)

Ref Expression
Assertion fmtno5lem2 655365=327680

Proof

Step Hyp Ref Expression
1 5nn0 50
2 6nn0 60
3 2 1 deccl 650
4 3 1 deccl 6550
5 3nn0 30
6 4 5 deccl 65530
7 eqid 65536=65536
8 0nn0 00
9 2nn0 20
10 5 9 deccl 320
11 7nn0 70
12 10 11 deccl 3270
13 12 2 deccl 32760
14 eqid 6553=6553
15 1nn0 10
16 5p1e6 5+1=6
17 eqid 655=655
18 eqid 65=65
19 6t5e30 65=30
20 2cn 2
21 20 addlidi 0+2=2
22 5 8 9 19 21 decaddi 65+2=32
23 5t5e25 55=25
24 1 2 1 18 1 9 22 23 decmul1c 655=325
25 5p2e7 5+2=7
26 10 1 9 24 25 decaddi 655+2=327
27 1 3 1 17 1 9 26 23 decmul1c 6555=3275
28 12 1 16 27 decsuc 6555+1=3276
29 5cn 5
30 3cn 3
31 5t3e15 53=15
32 29 30 31 mulcomli 35=15
33 1 4 5 14 1 15 28 32 decmul1c 65535=32765
34 5p3e8 5+3=8
35 13 1 5 33 34 decaddi 65535+3=32768
36 1 6 2 7 8 5 35 19 decmul1c 655365=327680