Description: Lemma 2 for fmtno5 . (Contributed by AV, 22-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | fmtno5lem2 | |- ( ; ; ; ; 6 5 5 3 6 x. 5 ) = ; ; ; ; ; 3 2 7 6 8 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 5nn0 | |- 5 e. NN0 |
|
2 | 6nn0 | |- 6 e. NN0 |
|
3 | 2 1 | deccl | |- ; 6 5 e. NN0 |
4 | 3 1 | deccl | |- ; ; 6 5 5 e. NN0 |
5 | 3nn0 | |- 3 e. NN0 |
|
6 | 4 5 | deccl | |- ; ; ; 6 5 5 3 e. NN0 |
7 | eqid | |- ; ; ; ; 6 5 5 3 6 = ; ; ; ; 6 5 5 3 6 |
|
8 | 0nn0 | |- 0 e. NN0 |
|
9 | 2nn0 | |- 2 e. NN0 |
|
10 | 5 9 | deccl | |- ; 3 2 e. NN0 |
11 | 7nn0 | |- 7 e. NN0 |
|
12 | 10 11 | deccl | |- ; ; 3 2 7 e. NN0 |
13 | 12 2 | deccl | |- ; ; ; 3 2 7 6 e. NN0 |
14 | eqid | |- ; ; ; 6 5 5 3 = ; ; ; 6 5 5 3 |
|
15 | 1nn0 | |- 1 e. NN0 |
|
16 | 5p1e6 | |- ( 5 + 1 ) = 6 |
|
17 | eqid | |- ; ; 6 5 5 = ; ; 6 5 5 |
|
18 | eqid | |- ; 6 5 = ; 6 5 |
|
19 | 6t5e30 | |- ( 6 x. 5 ) = ; 3 0 |
|
20 | 2cn | |- 2 e. CC |
|
21 | 20 | addid2i | |- ( 0 + 2 ) = 2 |
22 | 5 8 9 19 21 | decaddi | |- ( ( 6 x. 5 ) + 2 ) = ; 3 2 |
23 | 5t5e25 | |- ( 5 x. 5 ) = ; 2 5 |
|
24 | 1 2 1 18 1 9 22 23 | decmul1c | |- ( ; 6 5 x. 5 ) = ; ; 3 2 5 |
25 | 5p2e7 | |- ( 5 + 2 ) = 7 |
|
26 | 10 1 9 24 25 | decaddi | |- ( ( ; 6 5 x. 5 ) + 2 ) = ; ; 3 2 7 |
27 | 1 3 1 17 1 9 26 23 | decmul1c | |- ( ; ; 6 5 5 x. 5 ) = ; ; ; 3 2 7 5 |
28 | 12 1 16 27 | decsuc | |- ( ( ; ; 6 5 5 x. 5 ) + 1 ) = ; ; ; 3 2 7 6 |
29 | 5cn | |- 5 e. CC |
|
30 | 3cn | |- 3 e. CC |
|
31 | 5t3e15 | |- ( 5 x. 3 ) = ; 1 5 |
|
32 | 29 30 31 | mulcomli | |- ( 3 x. 5 ) = ; 1 5 |
33 | 1 4 5 14 1 15 28 32 | decmul1c | |- ( ; ; ; 6 5 5 3 x. 5 ) = ; ; ; ; 3 2 7 6 5 |
34 | 5p3e8 | |- ( 5 + 3 ) = 8 |
|
35 | 13 1 5 33 34 | decaddi | |- ( ( ; ; ; 6 5 5 3 x. 5 ) + 3 ) = ; ; ; ; 3 2 7 6 8 |
36 | 1 6 2 7 8 5 35 19 | decmul1c | |- ( ; ; ; ; 6 5 5 3 6 x. 5 ) = ; ; ; ; ; 3 2 7 6 8 0 |