Description: Lemma 2 for fmtno5 . (Contributed by AV, 22-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fmtno5lem2 | ⊢ ( ; ; ; ; 6 5 5 3 6 · 5 ) = ; ; ; ; ; 3 2 7 6 8 0 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 5nn0 | ⊢ 5 ∈ ℕ0 | |
| 2 | 6nn0 | ⊢ 6 ∈ ℕ0 | |
| 3 | 2 1 | deccl | ⊢ ; 6 5 ∈ ℕ0 | 
| 4 | 3 1 | deccl | ⊢ ; ; 6 5 5 ∈ ℕ0 | 
| 5 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
| 6 | 4 5 | deccl | ⊢ ; ; ; 6 5 5 3 ∈ ℕ0 | 
| 7 | eqid | ⊢ ; ; ; ; 6 5 5 3 6 = ; ; ; ; 6 5 5 3 6 | |
| 8 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 9 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 10 | 5 9 | deccl | ⊢ ; 3 2 ∈ ℕ0 | 
| 11 | 7nn0 | ⊢ 7 ∈ ℕ0 | |
| 12 | 10 11 | deccl | ⊢ ; ; 3 2 7 ∈ ℕ0 | 
| 13 | 12 2 | deccl | ⊢ ; ; ; 3 2 7 6 ∈ ℕ0 | 
| 14 | eqid | ⊢ ; ; ; 6 5 5 3 = ; ; ; 6 5 5 3 | |
| 15 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 16 | 5p1e6 | ⊢ ( 5 + 1 ) = 6 | |
| 17 | eqid | ⊢ ; ; 6 5 5 = ; ; 6 5 5 | |
| 18 | eqid | ⊢ ; 6 5 = ; 6 5 | |
| 19 | 6t5e30 | ⊢ ( 6 · 5 ) = ; 3 0 | |
| 20 | 2cn | ⊢ 2 ∈ ℂ | |
| 21 | 20 | addlidi | ⊢ ( 0 + 2 ) = 2 | 
| 22 | 5 8 9 19 21 | decaddi | ⊢ ( ( 6 · 5 ) + 2 ) = ; 3 2 | 
| 23 | 5t5e25 | ⊢ ( 5 · 5 ) = ; 2 5 | |
| 24 | 1 2 1 18 1 9 22 23 | decmul1c | ⊢ ( ; 6 5 · 5 ) = ; ; 3 2 5 | 
| 25 | 5p2e7 | ⊢ ( 5 + 2 ) = 7 | |
| 26 | 10 1 9 24 25 | decaddi | ⊢ ( ( ; 6 5 · 5 ) + 2 ) = ; ; 3 2 7 | 
| 27 | 1 3 1 17 1 9 26 23 | decmul1c | ⊢ ( ; ; 6 5 5 · 5 ) = ; ; ; 3 2 7 5 | 
| 28 | 12 1 16 27 | decsuc | ⊢ ( ( ; ; 6 5 5 · 5 ) + 1 ) = ; ; ; 3 2 7 6 | 
| 29 | 5cn | ⊢ 5 ∈ ℂ | |
| 30 | 3cn | ⊢ 3 ∈ ℂ | |
| 31 | 5t3e15 | ⊢ ( 5 · 3 ) = ; 1 5 | |
| 32 | 29 30 31 | mulcomli | ⊢ ( 3 · 5 ) = ; 1 5 | 
| 33 | 1 4 5 14 1 15 28 32 | decmul1c | ⊢ ( ; ; ; 6 5 5 3 · 5 ) = ; ; ; ; 3 2 7 6 5 | 
| 34 | 5p3e8 | ⊢ ( 5 + 3 ) = 8 | |
| 35 | 13 1 5 33 34 | decaddi | ⊢ ( ( ; ; ; 6 5 5 3 · 5 ) + 3 ) = ; ; ; ; 3 2 7 6 8 | 
| 36 | 1 6 2 7 8 5 35 19 | decmul1c | ⊢ ( ; ; ; ; 6 5 5 3 6 · 5 ) = ; ; ; ; ; 3 2 7 6 8 0 |