Metamath Proof Explorer


Theorem fmtno5

Description: The 5 th Fermat number. (Contributed by AV, 30-Jul-2021)

Ref Expression
Assertion fmtno5 ( FermatNo ‘ 5 ) = 4 2 9 4 9 6 7 2 9 7

Proof

Step Hyp Ref Expression
1 df-5 5 = ( 4 + 1 )
2 1 fveq2i ( FermatNo ‘ 5 ) = ( FermatNo ‘ ( 4 + 1 ) )
3 4nn0 4 ∈ ℕ0
4 fmtnorec1 ( 4 ∈ ℕ0 → ( FermatNo ‘ ( 4 + 1 ) ) = ( ( ( ( FermatNo ‘ 4 ) − 1 ) ↑ 2 ) + 1 ) )
5 3 4 ax-mp ( FermatNo ‘ ( 4 + 1 ) ) = ( ( ( ( FermatNo ‘ 4 ) − 1 ) ↑ 2 ) + 1 )
6 2 5 eqtri ( FermatNo ‘ 5 ) = ( ( ( ( FermatNo ‘ 4 ) − 1 ) ↑ 2 ) + 1 )
7 2nn0 2 ∈ ℕ0
8 3 7 deccl 4 2 ∈ ℕ0
9 9nn0 9 ∈ ℕ0
10 8 9 deccl 4 2 9 ∈ ℕ0
11 10 3 deccl 4 2 9 4 ∈ ℕ0
12 11 9 deccl 4 2 9 4 9 ∈ ℕ0
13 6nn0 6 ∈ ℕ0
14 12 13 deccl 4 2 9 4 9 6 ∈ ℕ0
15 7nn0 7 ∈ ℕ0
16 14 15 deccl 4 2 9 4 9 6 7 ∈ ℕ0
17 16 7 deccl 4 2 9 4 9 6 7 2 ∈ ℕ0
18 17 9 deccl 4 2 9 4 9 6 7 2 9 ∈ ℕ0
19 6p1e7 ( 6 + 1 ) = 7
20 5nn0 5 ∈ ℕ0
21 13 20 deccl 6 5 ∈ ℕ0
22 21 20 deccl 6 5 5 ∈ ℕ0
23 3nn0 3 ∈ ℕ0
24 22 23 deccl 6 5 5 3 ∈ ℕ0
25 1nn0 1 ∈ ℕ0
26 fmtno4 ( FermatNo ‘ 4 ) = 6 5 5 3 7
27 3p1e4 ( 3 + 1 ) = 4
28 eqid 6 5 5 3 = 6 5 5 3
29 22 23 27 28 decsuc ( 6 5 5 3 + 1 ) = 6 5 5 4
30 6cn 6 ∈ ℂ
31 ax-1cn 1 ∈ ℂ
32 df-7 7 = ( 6 + 1 )
33 30 31 32 mvrraddi ( 7 − 1 ) = 6
34 24 15 25 26 29 33 decsubi ( ( FermatNo ‘ 4 ) − 1 ) = 6 5 5 3 6
35 34 oveq1i ( ( ( FermatNo ‘ 4 ) − 1 ) ↑ 2 ) = ( 6 5 5 3 6 ↑ 2 )
36 fmtno5lem4 ( 6 5 5 3 6 ↑ 2 ) = 4 2 9 4 9 6 7 2 9 6
37 35 36 eqtri ( ( ( FermatNo ‘ 4 ) − 1 ) ↑ 2 ) = 4 2 9 4 9 6 7 2 9 6
38 18 13 19 37 decsuc ( ( ( ( FermatNo ‘ 4 ) − 1 ) ↑ 2 ) + 1 ) = 4 2 9 4 9 6 7 2 9 7
39 6 38 eqtri ( FermatNo ‘ 5 ) = 4 2 9 4 9 6 7 2 9 7