| Step |
Hyp |
Ref |
Expression |
| 1 |
|
decaddi.1 |
⊢ 𝐴 ∈ ℕ0 |
| 2 |
|
decaddi.2 |
⊢ 𝐵 ∈ ℕ0 |
| 3 |
|
decaddi.3 |
⊢ 𝑁 ∈ ℕ0 |
| 4 |
|
decaddi.4 |
⊢ 𝑀 = ; 𝐴 𝐵 |
| 5 |
|
decaddci.5 |
⊢ ( 𝐴 + 1 ) = 𝐷 |
| 6 |
|
decsubi.5 |
⊢ ( 𝐵 − 𝑁 ) = 𝐶 |
| 7 |
|
10nn0 |
⊢ ; 1 0 ∈ ℕ0 |
| 8 |
7 1
|
nn0mulcli |
⊢ ( ; 1 0 · 𝐴 ) ∈ ℕ0 |
| 9 |
8
|
nn0cni |
⊢ ( ; 1 0 · 𝐴 ) ∈ ℂ |
| 10 |
2
|
nn0cni |
⊢ 𝐵 ∈ ℂ |
| 11 |
3
|
nn0cni |
⊢ 𝑁 ∈ ℂ |
| 12 |
9 10 11
|
addsubassi |
⊢ ( ( ( ; 1 0 · 𝐴 ) + 𝐵 ) − 𝑁 ) = ( ( ; 1 0 · 𝐴 ) + ( 𝐵 − 𝑁 ) ) |
| 13 |
|
dfdec10 |
⊢ ; 𝐴 𝐵 = ( ( ; 1 0 · 𝐴 ) + 𝐵 ) |
| 14 |
4 13
|
eqtri |
⊢ 𝑀 = ( ( ; 1 0 · 𝐴 ) + 𝐵 ) |
| 15 |
14
|
oveq1i |
⊢ ( 𝑀 − 𝑁 ) = ( ( ( ; 1 0 · 𝐴 ) + 𝐵 ) − 𝑁 ) |
| 16 |
|
dfdec10 |
⊢ ; 𝐴 𝐶 = ( ( ; 1 0 · 𝐴 ) + 𝐶 ) |
| 17 |
6
|
eqcomi |
⊢ 𝐶 = ( 𝐵 − 𝑁 ) |
| 18 |
17
|
oveq2i |
⊢ ( ( ; 1 0 · 𝐴 ) + 𝐶 ) = ( ( ; 1 0 · 𝐴 ) + ( 𝐵 − 𝑁 ) ) |
| 19 |
16 18
|
eqtri |
⊢ ; 𝐴 𝐶 = ( ( ; 1 0 · 𝐴 ) + ( 𝐵 − 𝑁 ) ) |
| 20 |
12 15 19
|
3eqtr4i |
⊢ ( 𝑀 − 𝑁 ) = ; 𝐴 𝐶 |