| Step |
Hyp |
Ref |
Expression |
| 1 |
|
decaddi.1 |
|- A e. NN0 |
| 2 |
|
decaddi.2 |
|- B e. NN0 |
| 3 |
|
decaddi.3 |
|- N e. NN0 |
| 4 |
|
decaddi.4 |
|- M = ; A B |
| 5 |
|
decaddci.5 |
|- ( A + 1 ) = D |
| 6 |
|
decsubi.5 |
|- ( B - N ) = C |
| 7 |
|
10nn0 |
|- ; 1 0 e. NN0 |
| 8 |
7 1
|
nn0mulcli |
|- ( ; 1 0 x. A ) e. NN0 |
| 9 |
8
|
nn0cni |
|- ( ; 1 0 x. A ) e. CC |
| 10 |
2
|
nn0cni |
|- B e. CC |
| 11 |
3
|
nn0cni |
|- N e. CC |
| 12 |
9 10 11
|
addsubassi |
|- ( ( ( ; 1 0 x. A ) + B ) - N ) = ( ( ; 1 0 x. A ) + ( B - N ) ) |
| 13 |
|
dfdec10 |
|- ; A B = ( ( ; 1 0 x. A ) + B ) |
| 14 |
4 13
|
eqtri |
|- M = ( ( ; 1 0 x. A ) + B ) |
| 15 |
14
|
oveq1i |
|- ( M - N ) = ( ( ( ; 1 0 x. A ) + B ) - N ) |
| 16 |
|
dfdec10 |
|- ; A C = ( ( ; 1 0 x. A ) + C ) |
| 17 |
6
|
eqcomi |
|- C = ( B - N ) |
| 18 |
17
|
oveq2i |
|- ( ( ; 1 0 x. A ) + C ) = ( ( ; 1 0 x. A ) + ( B - N ) ) |
| 19 |
16 18
|
eqtri |
|- ; A C = ( ( ; 1 0 x. A ) + ( B - N ) ) |
| 20 |
12 15 19
|
3eqtr4i |
|- ( M - N ) = ; A C |