Metamath Proof Explorer


Theorem fmtno5nprm

Description: The 5 th Fermat number is a not a prime. (Contributed by AV, 22-Jul-2021)

Ref Expression
Assertion fmtno5nprm FermatNo5

Proof

Step Hyp Ref Expression
1 6nn0 60
2 7nn0 70
3 1 2 deccl 670
4 0nn0 00
5 3 4 deccl 6700
6 5 4 deccl 67000
7 4nn0 40
8 6 7 deccl 670040
9 1nn0 10
10 8 9 deccl 6700410
11 7nn 7
12 10 11 decnncl 6700417
13 1 7 deccl 640
14 1nn 1
15 13 14 decnncl 641
16 8 14 decnncl 670041
17 1lt10 1<10
18 16 2 9 17 declti 1<6700417
19 4nn 4
20 1 19 decnncl 64
21 20 9 9 17 declti 1<641
22 fmtno5fac FermatNo5=6700417641
23 22 eqcomi 6700417641=FermatNo5
24 12 15 18 21 23 nprmi ¬FermatNo5
25 24 nelir FermatNo5