Metamath Proof Explorer


Theorem fmtno5nprm

Description: The 5 th Fermat number is a not a prime. (Contributed by AV, 22-Jul-2021)

Ref Expression
Assertion fmtno5nprm ( FermatNo ‘ 5 ) ∉ ℙ

Proof

Step Hyp Ref Expression
1 6nn0 6 ∈ ℕ0
2 7nn0 7 ∈ ℕ0
3 1 2 deccl 6 7 ∈ ℕ0
4 0nn0 0 ∈ ℕ0
5 3 4 deccl 6 7 0 ∈ ℕ0
6 5 4 deccl 6 7 0 0 ∈ ℕ0
7 4nn0 4 ∈ ℕ0
8 6 7 deccl 6 7 0 0 4 ∈ ℕ0
9 1nn0 1 ∈ ℕ0
10 8 9 deccl 6 7 0 0 4 1 ∈ ℕ0
11 7nn 7 ∈ ℕ
12 10 11 decnncl 6 7 0 0 4 1 7 ∈ ℕ
13 1 7 deccl 6 4 ∈ ℕ0
14 1nn 1 ∈ ℕ
15 13 14 decnncl 6 4 1 ∈ ℕ
16 8 14 decnncl 6 7 0 0 4 1 ∈ ℕ
17 1lt10 1 < 1 0
18 16 2 9 17 declti 1 < 6 7 0 0 4 1 7
19 4nn 4 ∈ ℕ
20 1 19 decnncl 6 4 ∈ ℕ
21 20 9 9 17 declti 1 < 6 4 1
22 fmtno5fac ( FermatNo ‘ 5 ) = ( 6 7 0 0 4 1 7 · 6 4 1 )
23 22 eqcomi ( 6 7 0 0 4 1 7 · 6 4 1 ) = ( FermatNo ‘ 5 )
24 12 15 18 21 23 nprmi ¬ ( FermatNo ‘ 5 ) ∈ ℙ
25 24 nelir ( FermatNo ‘ 5 ) ∉ ℙ