Metamath Proof Explorer


Theorem fmtno5nprm

Description: The 5 th Fermat number is a not a prime. (Contributed by AV, 22-Jul-2021)

Ref Expression
Assertion fmtno5nprm FermatNo 5

Proof

Step Hyp Ref Expression
1 6nn0 6 0
2 7nn0 7 0
3 1 2 deccl 67 0
4 0nn0 0 0
5 3 4 deccl 670 0
6 5 4 deccl 6700 0
7 4nn0 4 0
8 6 7 deccl 67004 0
9 1nn0 1 0
10 8 9 deccl 670041 0
11 7nn 7
12 10 11 decnncl 6700417
13 1 7 deccl 64 0
14 1nn 1
15 13 14 decnncl 641
16 8 14 decnncl 670041
17 1lt10 1 < 10
18 16 2 9 17 declti 1 < 6700417
19 4nn 4
20 1 19 decnncl 64
21 20 9 9 17 declti 1 < 641
22 fmtno5fac FermatNo 5 = 6700417 641
23 22 eqcomi 6700417 641 = FermatNo 5
24 12 15 18 21 23 nprmi ¬ FermatNo 5
25 24 nelir FermatNo 5