Metamath Proof Explorer


Theorem fmtno5lem1

Description: Lemma 1 for fmtno5 . (Contributed by AV, 22-Jul-2021)

Ref Expression
Assertion fmtno5lem1 65536 6 = 393216

Proof

Step Hyp Ref Expression
1 6nn0 6 0
2 5nn0 5 0
3 1 2 deccl 65 0
4 3 2 deccl 655 0
5 3nn0 3 0
6 4 5 deccl 6553 0
7 eqid 65536 = 65536
8 9nn0 9 0
9 5 8 deccl 39 0
10 9 5 deccl 393 0
11 1nn0 1 0
12 10 11 deccl 3931 0
13 8nn0 8 0
14 eqid 6553 = 6553
15 0nn0 0 0
16 0p1e1 0 + 1 = 1
17 eqid 655 = 655
18 eqid 65 = 65
19 6t6e36 6 6 = 36
20 6p3e9 6 + 3 = 9
21 5 1 5 19 20 decaddi 6 6 + 3 = 39
22 6cn 6
23 5cn 5
24 6t5e30 6 5 = 30
25 22 23 24 mulcomli 5 6 = 30
26 1 1 2 18 15 5 21 25 decmul1c 65 6 = 390
27 3cn 3
28 27 addid2i 0 + 3 = 3
29 9 15 5 26 28 decaddi 65 6 + 3 = 393
30 1 3 2 17 15 5 29 25 decmul1c 655 6 = 3930
31 10 15 16 30 decsuc 655 6 + 1 = 3931
32 6t3e18 6 3 = 18
33 22 27 32 mulcomli 3 6 = 18
34 1 4 5 14 13 11 31 33 decmul1c 6553 6 = 39318
35 1p1e2 1 + 1 = 2
36 eqid 3931 = 3931
37 10 11 35 36 decsuc 3931 + 1 = 3932
38 8p3e11 8 + 3 = 11
39 12 13 5 34 37 11 38 decaddci 6553 6 + 3 = 39321
40 1 6 1 7 1 5 39 19 decmul1c 65536 6 = 393216