| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limsupequzmptlem.j |
|- F/ j ph |
| 2 |
|
limsupequzmptlem.m |
|- ( ph -> M e. ZZ ) |
| 3 |
|
limsupequzmptlem.n |
|- ( ph -> N e. ZZ ) |
| 4 |
|
limsupequzmptlem.a |
|- A = ( ZZ>= ` M ) |
| 5 |
|
limsupequzmptlem.b |
|- B = ( ZZ>= ` N ) |
| 6 |
|
limsupequzmptlem.c |
|- ( ( ph /\ j e. A ) -> C e. V ) |
| 7 |
|
limsupequzmptlem.d |
|- ( ( ph /\ j e. B ) -> C e. W ) |
| 8 |
|
limsupequzmptlem.k |
|- K = if ( M <_ N , N , M ) |
| 9 |
|
nfmpt1 |
|- F/_ j ( j e. A |-> C ) |
| 10 |
|
nfmpt1 |
|- F/_ j ( j e. B |-> C ) |
| 11 |
4
|
eqcomi |
|- ( ZZ>= ` M ) = A |
| 12 |
11
|
eleq2i |
|- ( j e. ( ZZ>= ` M ) <-> j e. A ) |
| 13 |
12
|
biimpi |
|- ( j e. ( ZZ>= ` M ) -> j e. A ) |
| 14 |
13 6
|
sylan2 |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> C e. V ) |
| 15 |
4
|
mpteq1i |
|- ( j e. A |-> C ) = ( j e. ( ZZ>= ` M ) |-> C ) |
| 16 |
1 14 15
|
fnmptd |
|- ( ph -> ( j e. A |-> C ) Fn ( ZZ>= ` M ) ) |
| 17 |
5
|
eleq2i |
|- ( j e. B <-> j e. ( ZZ>= ` N ) ) |
| 18 |
17
|
bicomi |
|- ( j e. ( ZZ>= ` N ) <-> j e. B ) |
| 19 |
18
|
biimpi |
|- ( j e. ( ZZ>= ` N ) -> j e. B ) |
| 20 |
19 7
|
sylan2 |
|- ( ( ph /\ j e. ( ZZ>= ` N ) ) -> C e. W ) |
| 21 |
5
|
mpteq1i |
|- ( j e. B |-> C ) = ( j e. ( ZZ>= ` N ) |-> C ) |
| 22 |
1 20 21
|
fnmptd |
|- ( ph -> ( j e. B |-> C ) Fn ( ZZ>= ` N ) ) |
| 23 |
3 2
|
ifcld |
|- ( ph -> if ( M <_ N , N , M ) e. ZZ ) |
| 24 |
8 23
|
eqeltrid |
|- ( ph -> K e. ZZ ) |
| 25 |
|
eqid |
|- ( ZZ>= ` M ) = ( ZZ>= ` M ) |
| 26 |
2
|
zred |
|- ( ph -> M e. RR ) |
| 27 |
3
|
zred |
|- ( ph -> N e. RR ) |
| 28 |
|
max1 |
|- ( ( M e. RR /\ N e. RR ) -> M <_ if ( M <_ N , N , M ) ) |
| 29 |
26 27 28
|
syl2anc |
|- ( ph -> M <_ if ( M <_ N , N , M ) ) |
| 30 |
29 8
|
breqtrrdi |
|- ( ph -> M <_ K ) |
| 31 |
25 2 24 30
|
eluzd |
|- ( ph -> K e. ( ZZ>= ` M ) ) |
| 32 |
31
|
uzssd |
|- ( ph -> ( ZZ>= ` K ) C_ ( ZZ>= ` M ) ) |
| 33 |
11
|
a1i |
|- ( ph -> ( ZZ>= ` M ) = A ) |
| 34 |
32 33
|
sseqtrd |
|- ( ph -> ( ZZ>= ` K ) C_ A ) |
| 35 |
34
|
adantr |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( ZZ>= ` K ) C_ A ) |
| 36 |
|
simpr |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> j e. ( ZZ>= ` K ) ) |
| 37 |
35 36
|
sseldd |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> j e. A ) |
| 38 |
37 6
|
syldan |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> C e. V ) |
| 39 |
|
eqid |
|- ( j e. A |-> C ) = ( j e. A |-> C ) |
| 40 |
39
|
fvmpt2 |
|- ( ( j e. A /\ C e. V ) -> ( ( j e. A |-> C ) ` j ) = C ) |
| 41 |
37 38 40
|
syl2anc |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( ( j e. A |-> C ) ` j ) = C ) |
| 42 |
|
eqid |
|- ( ZZ>= ` N ) = ( ZZ>= ` N ) |
| 43 |
|
max2 |
|- ( ( M e. RR /\ N e. RR ) -> N <_ if ( M <_ N , N , M ) ) |
| 44 |
26 27 43
|
syl2anc |
|- ( ph -> N <_ if ( M <_ N , N , M ) ) |
| 45 |
44 8
|
breqtrrdi |
|- ( ph -> N <_ K ) |
| 46 |
42 3 24 45
|
eluzd |
|- ( ph -> K e. ( ZZ>= ` N ) ) |
| 47 |
46
|
uzssd |
|- ( ph -> ( ZZ>= ` K ) C_ ( ZZ>= ` N ) ) |
| 48 |
5
|
eqcomi |
|- ( ZZ>= ` N ) = B |
| 49 |
48
|
a1i |
|- ( ph -> ( ZZ>= ` N ) = B ) |
| 50 |
47 49
|
sseqtrd |
|- ( ph -> ( ZZ>= ` K ) C_ B ) |
| 51 |
50
|
adantr |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( ZZ>= ` K ) C_ B ) |
| 52 |
51 36
|
sseldd |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> j e. B ) |
| 53 |
|
eqid |
|- ( j e. B |-> C ) = ( j e. B |-> C ) |
| 54 |
53
|
fvmpt2 |
|- ( ( j e. B /\ C e. V ) -> ( ( j e. B |-> C ) ` j ) = C ) |
| 55 |
52 38 54
|
syl2anc |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( ( j e. B |-> C ) ` j ) = C ) |
| 56 |
41 55
|
eqtr4d |
|- ( ( ph /\ j e. ( ZZ>= ` K ) ) -> ( ( j e. A |-> C ) ` j ) = ( ( j e. B |-> C ) ` j ) ) |
| 57 |
1 9 10 2 16 3 22 24 56
|
limsupequz |
|- ( ph -> ( limsup ` ( j e. A |-> C ) ) = ( limsup ` ( j e. B |-> C ) ) ) |