Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | limsupequzmpt.j | |- F/ j ph |
|
limsupequzmpt.m | |- ( ph -> M e. ZZ ) |
||
limsupequzmpt.n | |- ( ph -> N e. ZZ ) |
||
limsupequzmpt.a | |- A = ( ZZ>= ` M ) |
||
limsupequzmpt.b | |- B = ( ZZ>= ` N ) |
||
limsupequzmpt.c | |- ( ( ph /\ j e. A ) -> C e. V ) |
||
limsupequzmpt.d | |- ( ( ph /\ j e. B ) -> C e. W ) |
||
Assertion | limsupequzmpt | |- ( ph -> ( limsup ` ( j e. A |-> C ) ) = ( limsup ` ( j e. B |-> C ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupequzmpt.j | |- F/ j ph |
|
2 | limsupequzmpt.m | |- ( ph -> M e. ZZ ) |
|
3 | limsupequzmpt.n | |- ( ph -> N e. ZZ ) |
|
4 | limsupequzmpt.a | |- A = ( ZZ>= ` M ) |
|
5 | limsupequzmpt.b | |- B = ( ZZ>= ` N ) |
|
6 | limsupequzmpt.c | |- ( ( ph /\ j e. A ) -> C e. V ) |
|
7 | limsupequzmpt.d | |- ( ( ph /\ j e. B ) -> C e. W ) |
|
8 | eqid | |- if ( M <_ N , N , M ) = if ( M <_ N , N , M ) |
|
9 | 1 2 3 4 5 6 7 8 | limsupequzmptlem | |- ( ph -> ( limsup ` ( j e. A |-> C ) ) = ( limsup ` ( j e. B |-> C ) ) ) |