Metamath Proof Explorer


Theorem limsupequzmpt

Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupequzmpt.j j φ
limsupequzmpt.m φ M
limsupequzmpt.n φ N
limsupequzmpt.a A = M
limsupequzmpt.b B = N
limsupequzmpt.c φ j A C V
limsupequzmpt.d φ j B C W
Assertion limsupequzmpt φ lim sup j A C = lim sup j B C

Proof

Step Hyp Ref Expression
1 limsupequzmpt.j j φ
2 limsupequzmpt.m φ M
3 limsupequzmpt.n φ N
4 limsupequzmpt.a A = M
5 limsupequzmpt.b B = N
6 limsupequzmpt.c φ j A C V
7 limsupequzmpt.d φ j B C W
8 eqid if M N N M = if M N N M
9 1 2 3 4 5 6 7 8 limsupequzmptlem φ lim sup j A C = lim sup j B C