Metamath Proof Explorer


Theorem xlimuni

Description: An infinite sequence converges to at most one limit (w.r.t. to the standard topology on the extended reals). (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses xlimuni.1 ( 𝜑𝐹 ~~>* 𝐴 )
xlimuni.2 ( 𝜑𝐹 ~~>* 𝐵 )
Assertion xlimuni ( 𝜑𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 xlimuni.1 ( 𝜑𝐹 ~~>* 𝐴 )
2 xlimuni.2 ( 𝜑𝐹 ~~>* 𝐵 )
3 xrhaus ( ordTop ‘ ≤ ) ∈ Haus
4 3 a1i ( 𝜑 → ( ordTop ‘ ≤ ) ∈ Haus )
5 df-xlim ~~>* = ( ⇝𝑡 ‘ ( ordTop ‘ ≤ ) )
6 5 breqi ( 𝐹 ~~>* 𝐴𝐹 ( ⇝𝑡 ‘ ( ordTop ‘ ≤ ) ) 𝐴 )
7 1 6 sylib ( 𝜑𝐹 ( ⇝𝑡 ‘ ( ordTop ‘ ≤ ) ) 𝐴 )
8 5 breqi ( 𝐹 ~~>* 𝐵𝐹 ( ⇝𝑡 ‘ ( ordTop ‘ ≤ ) ) 𝐵 )
9 2 8 sylib ( 𝜑𝐹 ( ⇝𝑡 ‘ ( ordTop ‘ ≤ ) ) 𝐵 )
10 4 7 9 lmmo ( 𝜑𝐴 = 𝐵 )