Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for Glauco Siliprandi Limits Limits for sequences of extended real numbers xlimclimdm  
				
		 
		
			
		 
		Description:   A sequence of extended reals that converges to a real w.r.t. the
       standard topology on the extended reals, also converges w.r.t. to the
       standard topology on the complex numbers.  (Contributed by Glauco
       Siliprandi , 23-Apr-2023) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						xlimclimdm.1 ⊢  ( 𝜑   →  𝑀   ∈  ℤ )  
					
						xlimclimdm.2 ⊢  𝑍   =  ( ℤ≥  ‘ 𝑀  )  
					
						xlimclimdm.3 ⊢  ( 𝜑   →  𝐹  : 𝑍  ⟶ ℝ*  )  
					
						xlimclimdm.4 ⊢  ( 𝜑   →  𝐹  ~~>* 𝐴  )  
					
						xlimclimdm.5 ⊢  ( 𝜑   →  𝐴   ∈  ℝ )  
				
					Assertion 
					xlimclimdm ⊢   ( 𝜑   →  𝐹   ∈  dom   ⇝  )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							xlimclimdm.1 ⊢  ( 𝜑   →  𝑀   ∈  ℤ )  
						
							2 
								
							 
							xlimclimdm.2 ⊢  𝑍   =  ( ℤ≥  ‘ 𝑀  )  
						
							3 
								
							 
							xlimclimdm.3 ⊢  ( 𝜑   →  𝐹  : 𝑍  ⟶ ℝ*  )  
						
							4 
								
							 
							xlimclimdm.4 ⊢  ( 𝜑   →  𝐹  ~~>* 𝐴  )  
						
							5 
								
							 
							xlimclimdm.5 ⊢  ( 𝜑   →  𝐴   ∈  ℝ )  
						
							6 
								
							 
							climrel ⊢  Rel   ⇝   
						
							7 
								1  2  3  5 
							 
							xlimclim2 ⊢  ( 𝜑   →  ( 𝐹  ~~>* 𝐴   ↔  𝐹   ⇝  𝐴  ) )  
						
							8 
								4  7 
							 
							mpbid ⊢  ( 𝜑   →  𝐹   ⇝  𝐴  )  
						
							9 
								
							 
							releldm ⊢  ( ( Rel   ⇝   ∧  𝐹   ⇝  𝐴  )  →  𝐹   ∈  dom   ⇝  )  
						
							10 
								6  8  9 
							 
							sylancr ⊢  ( 𝜑   →  𝐹   ∈  dom   ⇝  )