Metamath Proof Explorer


Theorem xlimclimdm

Description: A sequence of extended reals that converges to a real w.r.t. the standard topology on the extended reals, also converges w.r.t. to the standard topology on the complex numbers. (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses xlimclimdm.1 ( 𝜑𝑀 ∈ ℤ )
xlimclimdm.2 𝑍 = ( ℤ𝑀 )
xlimclimdm.3 ( 𝜑𝐹 : 𝑍 ⟶ ℝ* )
xlimclimdm.4 ( 𝜑𝐹 ~~>* 𝐴 )
xlimclimdm.5 ( 𝜑𝐴 ∈ ℝ )
Assertion xlimclimdm ( 𝜑𝐹 ∈ dom ⇝ )

Proof

Step Hyp Ref Expression
1 xlimclimdm.1 ( 𝜑𝑀 ∈ ℤ )
2 xlimclimdm.2 𝑍 = ( ℤ𝑀 )
3 xlimclimdm.3 ( 𝜑𝐹 : 𝑍 ⟶ ℝ* )
4 xlimclimdm.4 ( 𝜑𝐹 ~~>* 𝐴 )
5 xlimclimdm.5 ( 𝜑𝐴 ∈ ℝ )
6 climrel Rel ⇝
7 1 2 3 5 xlimclim2 ( 𝜑 → ( 𝐹 ~~>* 𝐴𝐹𝐴 ) )
8 4 7 mpbid ( 𝜑𝐹𝐴 )
9 releldm ( ( Rel ⇝ ∧ 𝐹𝐴 ) → 𝐹 ∈ dom ⇝ )
10 6 8 9 sylancr ( 𝜑𝐹 ∈ dom ⇝ )