Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Limits
Limits for sequences of extended real numbers
xlimclimdm
Metamath Proof Explorer
Description: A sequence of extended reals that converges to a real w.r.t. the
standard topology on the extended reals, also converges w.r.t. to the
standard topology on the complex numbers. (Contributed by Glauco
Siliprandi , 23-Apr-2023)
Ref
Expression
Hypotheses
xlimclimdm.1
⊢ ( 𝜑 → 𝑀 ∈ ℤ )
xlimclimdm.2
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 )
xlimclimdm.3
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ* )
xlimclimdm.4
⊢ ( 𝜑 → 𝐹 ~~>* 𝐴 )
xlimclimdm.5
⊢ ( 𝜑 → 𝐴 ∈ ℝ )
Assertion
xlimclimdm
⊢ ( 𝜑 → 𝐹 ∈ dom ⇝ )
Proof
Step
Hyp
Ref
Expression
1
xlimclimdm.1
⊢ ( 𝜑 → 𝑀 ∈ ℤ )
2
xlimclimdm.2
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 )
3
xlimclimdm.3
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ* )
4
xlimclimdm.4
⊢ ( 𝜑 → 𝐹 ~~>* 𝐴 )
5
xlimclimdm.5
⊢ ( 𝜑 → 𝐴 ∈ ℝ )
6
climrel
⊢ Rel ⇝
7
1 2 3 5
xlimclim2
⊢ ( 𝜑 → ( 𝐹 ~~>* 𝐴 ↔ 𝐹 ⇝ 𝐴 ) )
8
4 7
mpbid
⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 )
9
releldm
⊢ ( ( Rel ⇝ ∧ 𝐹 ⇝ 𝐴 ) → 𝐹 ∈ dom ⇝ )
10
6 8 9
sylancr
⊢ ( 𝜑 → 𝐹 ∈ dom ⇝ )