Description: The convergence relation on the extended reals is a function. (Contributed by Glauco Siliprandi, 23-Apr-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | xlimfun | ⊢ Fun ~~>* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrhaus | ⊢ ( ordTop ‘ ≤ ) ∈ Haus | |
2 | lmfun | ⊢ ( ( ordTop ‘ ≤ ) ∈ Haus → Fun ( ⇝𝑡 ‘ ( ordTop ‘ ≤ ) ) ) | |
3 | 1 2 | ax-mp | ⊢ Fun ( ⇝𝑡 ‘ ( ordTop ‘ ≤ ) ) |
4 | df-xlim | ⊢ ~~>* = ( ⇝𝑡 ‘ ( ordTop ‘ ≤ ) ) | |
5 | 4 | funeqi | ⊢ ( Fun ~~>* ↔ Fun ( ⇝𝑡 ‘ ( ordTop ‘ ≤ ) ) ) |
6 | 3 5 | mpbir | ⊢ Fun ~~>* |