Metamath Proof Explorer


Theorem xlimfun

Description: The convergence relation on the extended reals is a function. (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Assertion xlimfun Fun ~~>*

Proof

Step Hyp Ref Expression
1 xrhaus ( ordTop ‘ ≤ ) ∈ Haus
2 lmfun ( ( ordTop ‘ ≤ ) ∈ Haus → Fun ( ⇝𝑡 ‘ ( ordTop ‘ ≤ ) ) )
3 1 2 ax-mp Fun ( ⇝𝑡 ‘ ( ordTop ‘ ≤ ) )
4 df-xlim ~~>* = ( ⇝𝑡 ‘ ( ordTop ‘ ≤ ) )
5 4 funeqi ( Fun ~~>* ↔ Fun ( ⇝𝑡 ‘ ( ordTop ‘ ≤ ) ) )
6 3 5 mpbir Fun ~~>*