Step |
Hyp |
Ref |
Expression |
1 |
|
lmrel |
⊢ Rel ( ⇝𝑡 ‘ 𝐽 ) |
2 |
1
|
a1i |
⊢ ( 𝐽 ∈ Haus → Rel ( ⇝𝑡 ‘ 𝐽 ) ) |
3 |
|
simpl |
⊢ ( ( 𝐽 ∈ Haus ∧ ( 𝑥 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ∧ 𝑥 ( ⇝𝑡 ‘ 𝐽 ) 𝑧 ) ) → 𝐽 ∈ Haus ) |
4 |
|
simprl |
⊢ ( ( 𝐽 ∈ Haus ∧ ( 𝑥 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ∧ 𝑥 ( ⇝𝑡 ‘ 𝐽 ) 𝑧 ) ) → 𝑥 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) |
5 |
|
simprr |
⊢ ( ( 𝐽 ∈ Haus ∧ ( 𝑥 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ∧ 𝑥 ( ⇝𝑡 ‘ 𝐽 ) 𝑧 ) ) → 𝑥 ( ⇝𝑡 ‘ 𝐽 ) 𝑧 ) |
6 |
3 4 5
|
lmmo |
⊢ ( ( 𝐽 ∈ Haus ∧ ( 𝑥 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ∧ 𝑥 ( ⇝𝑡 ‘ 𝐽 ) 𝑧 ) ) → 𝑦 = 𝑧 ) |
7 |
6
|
ex |
⊢ ( 𝐽 ∈ Haus → ( ( 𝑥 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ∧ 𝑥 ( ⇝𝑡 ‘ 𝐽 ) 𝑧 ) → 𝑦 = 𝑧 ) ) |
8 |
7
|
alrimiv |
⊢ ( 𝐽 ∈ Haus → ∀ 𝑧 ( ( 𝑥 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ∧ 𝑥 ( ⇝𝑡 ‘ 𝐽 ) 𝑧 ) → 𝑦 = 𝑧 ) ) |
9 |
8
|
alrimiv |
⊢ ( 𝐽 ∈ Haus → ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ∧ 𝑥 ( ⇝𝑡 ‘ 𝐽 ) 𝑧 ) → 𝑦 = 𝑧 ) ) |
10 |
9
|
alrimiv |
⊢ ( 𝐽 ∈ Haus → ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ∧ 𝑥 ( ⇝𝑡 ‘ 𝐽 ) 𝑧 ) → 𝑦 = 𝑧 ) ) |
11 |
|
dffun2 |
⊢ ( Fun ( ⇝𝑡 ‘ 𝐽 ) ↔ ( Rel ( ⇝𝑡 ‘ 𝐽 ) ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ∧ 𝑥 ( ⇝𝑡 ‘ 𝐽 ) 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
12 |
2 10 11
|
sylanbrc |
⊢ ( 𝐽 ∈ Haus → Fun ( ⇝𝑡 ‘ 𝐽 ) ) |