Description: If a sequence of extended reals converges to -oo then its superior limit is also -oo . (Contributed by Glauco Siliprandi, 23-Apr-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xlimmnflimsup.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| xlimmnflimsup.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | ||
| xlimmnflimsup.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ* ) | ||
| xlimmnflimsup.c | ⊢ ( 𝜑 → 𝐹 ~~>* -∞ ) | ||
| Assertion | xlimmnflimsup | ⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) = -∞ ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | xlimmnflimsup.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 2 | xlimmnflimsup.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 3 | xlimmnflimsup.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ* ) | |
| 4 | xlimmnflimsup.c | ⊢ ( 𝜑 → 𝐹 ~~>* -∞ ) | |
| 5 | 1 2 3 | xlimmnfv | ⊢ ( 𝜑 → ( 𝐹 ~~>* -∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) | 
| 6 | 4 5 | mpbid | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) | 
| 7 | nfcv | ⊢ Ⅎ 𝑗 𝐹 | |
| 8 | 7 1 2 3 | limsupmnfuz | ⊢ ( 𝜑 → ( ( lim sup ‘ 𝐹 ) = -∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) | 
| 9 | 6 8 | mpbird | ⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) = -∞ ) |