Metamath Proof Explorer


Theorem xlimmnflimsup

Description: If a sequence of extended reals converges to -oo then its superior limit is also -oo . (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses xlimmnflimsup.m ( 𝜑𝑀 ∈ ℤ )
xlimmnflimsup.z 𝑍 = ( ℤ𝑀 )
xlimmnflimsup.f ( 𝜑𝐹 : 𝑍 ⟶ ℝ* )
xlimmnflimsup.c ( 𝜑𝐹 ~~>* -∞ )
Assertion xlimmnflimsup ( 𝜑 → ( lim sup ‘ 𝐹 ) = -∞ )

Proof

Step Hyp Ref Expression
1 xlimmnflimsup.m ( 𝜑𝑀 ∈ ℤ )
2 xlimmnflimsup.z 𝑍 = ( ℤ𝑀 )
3 xlimmnflimsup.f ( 𝜑𝐹 : 𝑍 ⟶ ℝ* )
4 xlimmnflimsup.c ( 𝜑𝐹 ~~>* -∞ )
5 1 2 3 xlimmnfv ( 𝜑 → ( 𝐹 ~~>* -∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ( 𝐹𝑗 ) ≤ 𝑥 ) )
6 4 5 mpbid ( 𝜑 → ∀ 𝑥 ∈ ℝ ∃ 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ( 𝐹𝑗 ) ≤ 𝑥 )
7 nfcv 𝑗 𝐹
8 7 1 2 3 limsupmnfuz ( 𝜑 → ( ( lim sup ‘ 𝐹 ) = -∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ( 𝐹𝑗 ) ≤ 𝑥 ) )
9 6 8 mpbird ( 𝜑 → ( lim sup ‘ 𝐹 ) = -∞ )