Description: If a sequence of extended reals converges to -oo then its superior limit is also -oo . (Contributed by Glauco Siliprandi, 23-Apr-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | xlimmnflimsup.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
xlimmnflimsup.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | ||
xlimmnflimsup.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ* ) | ||
xlimmnflimsup.c | ⊢ ( 𝜑 → 𝐹 ~~>* -∞ ) | ||
Assertion | xlimmnflimsup | ⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) = -∞ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xlimmnflimsup.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
2 | xlimmnflimsup.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
3 | xlimmnflimsup.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ* ) | |
4 | xlimmnflimsup.c | ⊢ ( 𝜑 → 𝐹 ~~>* -∞ ) | |
5 | 1 2 3 | xlimmnfv | ⊢ ( 𝜑 → ( 𝐹 ~~>* -∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
6 | 4 5 | mpbid | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) |
7 | nfcv | ⊢ Ⅎ 𝑗 𝐹 | |
8 | 7 1 2 3 | limsupmnfuz | ⊢ ( 𝜑 → ( ( lim sup ‘ 𝐹 ) = -∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
9 | 6 8 | mpbird | ⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) = -∞ ) |