Step |
Hyp |
Ref |
Expression |
1 |
|
xlimmnflimsup.m |
|- ( ph -> M e. ZZ ) |
2 |
|
xlimmnflimsup.z |
|- Z = ( ZZ>= ` M ) |
3 |
|
xlimmnflimsup.f |
|- ( ph -> F : Z --> RR* ) |
4 |
|
xlimmnflimsup.c |
|- ( ph -> F ~~>* -oo ) |
5 |
1 2 3
|
xlimmnfv |
|- ( ph -> ( F ~~>* -oo <-> A. x e. RR E. k e. Z A. j e. ( ZZ>= ` k ) ( F ` j ) <_ x ) ) |
6 |
4 5
|
mpbid |
|- ( ph -> A. x e. RR E. k e. Z A. j e. ( ZZ>= ` k ) ( F ` j ) <_ x ) |
7 |
|
nfcv |
|- F/_ j F |
8 |
7 1 2 3
|
limsupmnfuz |
|- ( ph -> ( ( limsup ` F ) = -oo <-> A. x e. RR E. k e. Z A. j e. ( ZZ>= ` k ) ( F ` j ) <_ x ) ) |
9 |
6 8
|
mpbird |
|- ( ph -> ( limsup ` F ) = -oo ) |