| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xlimmnflimsup.m |  |-  ( ph -> M e. ZZ ) | 
						
							| 2 |  | xlimmnflimsup.z |  |-  Z = ( ZZ>= ` M ) | 
						
							| 3 |  | xlimmnflimsup.f |  |-  ( ph -> F : Z --> RR* ) | 
						
							| 4 |  | xlimmnflimsup.c |  |-  ( ph -> F ~~>* -oo ) | 
						
							| 5 | 1 2 3 | xlimmnfv |  |-  ( ph -> ( F ~~>* -oo <-> A. x e. RR E. k e. Z A. j e. ( ZZ>= ` k ) ( F ` j ) <_ x ) ) | 
						
							| 6 | 4 5 | mpbid |  |-  ( ph -> A. x e. RR E. k e. Z A. j e. ( ZZ>= ` k ) ( F ` j ) <_ x ) | 
						
							| 7 |  | nfcv |  |-  F/_ j F | 
						
							| 8 | 7 1 2 3 | limsupmnfuz |  |-  ( ph -> ( ( limsup ` F ) = -oo <-> A. x e. RR E. k e. Z A. j e. ( ZZ>= ` k ) ( F ` j ) <_ x ) ) | 
						
							| 9 | 6 8 | mpbird |  |-  ( ph -> ( limsup ` F ) = -oo ) |