Metamath Proof Explorer


Theorem xlimmnflimsup

Description: If a sequence of extended reals converges to -oo then its superior limit is also -oo . (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses xlimmnflimsup.m
|- ( ph -> M e. ZZ )
xlimmnflimsup.z
|- Z = ( ZZ>= ` M )
xlimmnflimsup.f
|- ( ph -> F : Z --> RR* )
xlimmnflimsup.c
|- ( ph -> F ~~>* -oo )
Assertion xlimmnflimsup
|- ( ph -> ( limsup ` F ) = -oo )

Proof

Step Hyp Ref Expression
1 xlimmnflimsup.m
 |-  ( ph -> M e. ZZ )
2 xlimmnflimsup.z
 |-  Z = ( ZZ>= ` M )
3 xlimmnflimsup.f
 |-  ( ph -> F : Z --> RR* )
4 xlimmnflimsup.c
 |-  ( ph -> F ~~>* -oo )
5 1 2 3 xlimmnfv
 |-  ( ph -> ( F ~~>* -oo <-> A. x e. RR E. k e. Z A. j e. ( ZZ>= ` k ) ( F ` j ) <_ x ) )
6 4 5 mpbid
 |-  ( ph -> A. x e. RR E. k e. Z A. j e. ( ZZ>= ` k ) ( F ` j ) <_ x )
7 nfcv
 |-  F/_ j F
8 7 1 2 3 limsupmnfuz
 |-  ( ph -> ( ( limsup ` F ) = -oo <-> A. x e. RR E. k e. Z A. j e. ( ZZ>= ` k ) ( F ` j ) <_ x ) )
9 6 8 mpbird
 |-  ( ph -> ( limsup ` F ) = -oo )