Metamath Proof Explorer


Theorem xlimmnflimsup

Description: If a sequence of extended reals converges to -oo then its superior limit is also -oo . (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses xlimmnflimsup.m φ M
xlimmnflimsup.z Z = M
xlimmnflimsup.f φ F : Z *
xlimmnflimsup.c φ F * −∞
Assertion xlimmnflimsup φ lim sup F = −∞

Proof

Step Hyp Ref Expression
1 xlimmnflimsup.m φ M
2 xlimmnflimsup.z Z = M
3 xlimmnflimsup.f φ F : Z *
4 xlimmnflimsup.c φ F * −∞
5 1 2 3 xlimmnfv φ F * −∞ x k Z j k F j x
6 4 5 mpbid φ x k Z j k F j x
7 nfcv _ j F
8 7 1 2 3 limsupmnfuz φ lim sup F = −∞ x k Z j k F j x
9 6 8 mpbird φ lim sup F = −∞