Metamath Proof Explorer


Theorem xlimmnflimsup

Description: If a sequence of extended reals converges to -oo then its superior limit is also -oo . (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses xlimmnflimsup.m φM
xlimmnflimsup.z Z=M
xlimmnflimsup.f φF:Z*
xlimmnflimsup.c φF*−∞
Assertion xlimmnflimsup φlim supF=−∞

Proof

Step Hyp Ref Expression
1 xlimmnflimsup.m φM
2 xlimmnflimsup.z Z=M
3 xlimmnflimsup.f φF:Z*
4 xlimmnflimsup.c φF*−∞
5 1 2 3 xlimmnfv φF*−∞xkZjkFjx
6 4 5 mpbid φxkZjkFjx
7 nfcv _jF
8 7 1 2 3 limsupmnfuz φlim supF=−∞xkZjkFjx
9 6 8 mpbird φlim supF=−∞