Metamath Proof Explorer


Theorem xlimclimdm

Description: A sequence of extended reals that converges to a real w.r.t. the standard topology on the extended reals, also converges w.r.t. to the standard topology on the complex numbers. (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses xlimclimdm.1
|- ( ph -> M e. ZZ )
xlimclimdm.2
|- Z = ( ZZ>= ` M )
xlimclimdm.3
|- ( ph -> F : Z --> RR* )
xlimclimdm.4
|- ( ph -> F ~~>* A )
xlimclimdm.5
|- ( ph -> A e. RR )
Assertion xlimclimdm
|- ( ph -> F e. dom ~~> )

Proof

Step Hyp Ref Expression
1 xlimclimdm.1
 |-  ( ph -> M e. ZZ )
2 xlimclimdm.2
 |-  Z = ( ZZ>= ` M )
3 xlimclimdm.3
 |-  ( ph -> F : Z --> RR* )
4 xlimclimdm.4
 |-  ( ph -> F ~~>* A )
5 xlimclimdm.5
 |-  ( ph -> A e. RR )
6 climrel
 |-  Rel ~~>
7 1 2 3 5 xlimclim2
 |-  ( ph -> ( F ~~>* A <-> F ~~> A ) )
8 4 7 mpbid
 |-  ( ph -> F ~~> A )
9 releldm
 |-  ( ( Rel ~~> /\ F ~~> A ) -> F e. dom ~~> )
10 6 8 9 sylancr
 |-  ( ph -> F e. dom ~~> )