Metamath Proof Explorer


Theorem xlimclimdm

Description: A sequence of extended reals that converges to a real w.r.t. the standard topology on the extended reals, also converges w.r.t. to the standard topology on the complex numbers. (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses xlimclimdm.1 φ M
xlimclimdm.2 Z = M
xlimclimdm.3 φ F : Z *
xlimclimdm.4 φ F * A
xlimclimdm.5 φ A
Assertion xlimclimdm φ F dom

Proof

Step Hyp Ref Expression
1 xlimclimdm.1 φ M
2 xlimclimdm.2 Z = M
3 xlimclimdm.3 φ F : Z *
4 xlimclimdm.4 φ F * A
5 xlimclimdm.5 φ A
6 climrel Rel
7 1 2 3 5 xlimclim2 φ F * A F A
8 4 7 mpbid φ F A
9 releldm Rel F A F dom
10 6 8 9 sylancr φ F dom