Metamath Proof Explorer


Theorem xlimuni

Description: An infinite sequence converges to at most one limit (w.r.t. to the standard topology on the extended reals). (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses xlimuni.1 φF*A
xlimuni.2 φF*B
Assertion xlimuni φA=B

Proof

Step Hyp Ref Expression
1 xlimuni.1 φF*A
2 xlimuni.2 φF*B
3 xrhaus ordTopHaus
4 3 a1i φordTopHaus
5 df-xlim *=tordTop
6 5 breqi F*AFtordTopA
7 1 6 sylib φFtordTopA
8 5 breqi F*BFtordTopB
9 2 8 sylib φFtordTopB
10 4 7 9 lmmo φA=B