Metamath Proof Explorer


Theorem xlimuni

Description: An infinite sequence converges to at most one limit (w.r.t. to the standard topology on the extended reals). (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses xlimuni.1 φ F * A
xlimuni.2 φ F * B
Assertion xlimuni φ A = B

Proof

Step Hyp Ref Expression
1 xlimuni.1 φ F * A
2 xlimuni.2 φ F * B
3 xrhaus ordTop Haus
4 3 a1i φ ordTop Haus
5 df-xlim * = t ordTop
6 5 breqi F * A F t ordTop A
7 1 6 sylib φ F t ordTop A
8 5 breqi F * B F t ordTop B
9 2 8 sylib φ F t ordTop B
10 4 7 9 lmmo φ A = B