Metamath Proof Explorer


Theorem xlimuni

Description: An infinite sequence converges to at most one limit (w.r.t. to the standard topology on the extended reals). (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses xlimuni.1
|- ( ph -> F ~~>* A )
xlimuni.2
|- ( ph -> F ~~>* B )
Assertion xlimuni
|- ( ph -> A = B )

Proof

Step Hyp Ref Expression
1 xlimuni.1
 |-  ( ph -> F ~~>* A )
2 xlimuni.2
 |-  ( ph -> F ~~>* B )
3 xrhaus
 |-  ( ordTop ` <_ ) e. Haus
4 3 a1i
 |-  ( ph -> ( ordTop ` <_ ) e. Haus )
5 df-xlim
 |-  ~~>* = ( ~~>t ` ( ordTop ` <_ ) )
6 5 breqi
 |-  ( F ~~>* A <-> F ( ~~>t ` ( ordTop ` <_ ) ) A )
7 1 6 sylib
 |-  ( ph -> F ( ~~>t ` ( ordTop ` <_ ) ) A )
8 5 breqi
 |-  ( F ~~>* B <-> F ( ~~>t ` ( ordTop ` <_ ) ) B )
9 2 8 sylib
 |-  ( ph -> F ( ~~>t ` ( ordTop ` <_ ) ) B )
10 4 7 9 lmmo
 |-  ( ph -> A = B )