Description: An infinite sequence converges to at most one limit (w.r.t. to the standard topology on the extended reals). (Contributed by Glauco Siliprandi, 23-Apr-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | xlimuni.1 | |- ( ph -> F ~~>* A ) |
|
xlimuni.2 | |- ( ph -> F ~~>* B ) |
||
Assertion | xlimuni | |- ( ph -> A = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xlimuni.1 | |- ( ph -> F ~~>* A ) |
|
2 | xlimuni.2 | |- ( ph -> F ~~>* B ) |
|
3 | xrhaus | |- ( ordTop ` <_ ) e. Haus |
|
4 | 3 | a1i | |- ( ph -> ( ordTop ` <_ ) e. Haus ) |
5 | df-xlim | |- ~~>* = ( ~~>t ` ( ordTop ` <_ ) ) |
|
6 | 5 | breqi | |- ( F ~~>* A <-> F ( ~~>t ` ( ordTop ` <_ ) ) A ) |
7 | 1 6 | sylib | |- ( ph -> F ( ~~>t ` ( ordTop ` <_ ) ) A ) |
8 | 5 | breqi | |- ( F ~~>* B <-> F ( ~~>t ` ( ordTop ` <_ ) ) B ) |
9 | 2 8 | sylib | |- ( ph -> F ( ~~>t ` ( ordTop ` <_ ) ) B ) |
10 | 4 7 9 | lmmo | |- ( ph -> A = B ) |