Metamath Proof Explorer


Theorem dmclimxlim

Description: A real valued sequence that converges w.r.t. the topology on the complex numbers, converges w.r.t. the topology on the extended reals (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses dmclimxlim.1 ( 𝜑𝑀 ∈ ℤ )
dmclimxlim.2 𝑍 = ( ℤ𝑀 )
dmclimxlim.3 ( 𝜑𝐹 : 𝑍 ⟶ ℝ )
dmclimxlim.4 ( 𝜑𝐹 ∈ dom ⇝ )
Assertion dmclimxlim ( 𝜑𝐹 ∈ dom ~~>* )

Proof

Step Hyp Ref Expression
1 dmclimxlim.1 ( 𝜑𝑀 ∈ ℤ )
2 dmclimxlim.2 𝑍 = ( ℤ𝑀 )
3 dmclimxlim.3 ( 𝜑𝐹 : 𝑍 ⟶ ℝ )
4 dmclimxlim.4 ( 𝜑𝐹 ∈ dom ⇝ )
5 xlimrel Rel ~~>*
6 1 2 3 climliminf ( 𝜑 → ( 𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( lim inf ‘ 𝐹 ) ) )
7 4 6 mpbid ( 𝜑𝐹 ⇝ ( lim inf ‘ 𝐹 ) )
8 1 2 3 7 climxlim ( 𝜑𝐹 ~~>* ( lim inf ‘ 𝐹 ) )
9 releldm ( ( Rel ~~>* ∧ 𝐹 ~~>* ( lim inf ‘ 𝐹 ) ) → 𝐹 ∈ dom ~~>* )
10 5 8 9 sylancr ( 𝜑𝐹 ∈ dom ~~>* )