Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Limits
Limits for sequences of extended real numbers
dmclimxlim
Metamath Proof Explorer
Description: A real valued sequence that converges w.r.t. the topology on the complex
numbers, converges w.r.t. the topology on the extended reals
(Contributed by Glauco Siliprandi , 23-Apr-2023)
Ref
Expression
Hypotheses
dmclimxlim.1
⊢ ( 𝜑 → 𝑀 ∈ ℤ )
dmclimxlim.2
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 )
dmclimxlim.3
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ )
dmclimxlim.4
⊢ ( 𝜑 → 𝐹 ∈ dom ⇝ )
Assertion
dmclimxlim
⊢ ( 𝜑 → 𝐹 ∈ dom ~~>* )
Proof
Step
Hyp
Ref
Expression
1
dmclimxlim.1
⊢ ( 𝜑 → 𝑀 ∈ ℤ )
2
dmclimxlim.2
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 )
3
dmclimxlim.3
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ )
4
dmclimxlim.4
⊢ ( 𝜑 → 𝐹 ∈ dom ⇝ )
5
xlimrel
⊢ Rel ~~>*
6
1 2 3
climliminf
⊢ ( 𝜑 → ( 𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( lim inf ‘ 𝐹 ) ) )
7
4 6
mpbid
⊢ ( 𝜑 → 𝐹 ⇝ ( lim inf ‘ 𝐹 ) )
8
1 2 3 7
climxlim
⊢ ( 𝜑 → 𝐹 ~~>* ( lim inf ‘ 𝐹 ) )
9
releldm
⊢ ( ( Rel ~~>* ∧ 𝐹 ~~>* ( lim inf ‘ 𝐹 ) ) → 𝐹 ∈ dom ~~>* )
10
5 8 9
sylancr
⊢ ( 𝜑 → 𝐹 ∈ dom ~~>* )