Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for Glauco Siliprandi Limits Limits for sequences of extended real numbers dmclimxlim  
				
		 
		
			
		 
		Description:   A real valued sequence that converges w.r.t. the topology on the complex
       numbers, converges w.r.t. the topology on the extended reals
       (Contributed by Glauco Siliprandi , 23-Apr-2023) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						dmclimxlim.1 ⊢  ( 𝜑   →  𝑀   ∈  ℤ )  
					
						dmclimxlim.2 ⊢  𝑍   =  ( ℤ≥  ‘ 𝑀  )  
					
						dmclimxlim.3 ⊢  ( 𝜑   →  𝐹  : 𝑍  ⟶ ℝ )  
					
						dmclimxlim.4 ⊢  ( 𝜑   →  𝐹   ∈  dom   ⇝  )  
				
					Assertion 
					dmclimxlim ⊢   ( 𝜑   →  𝐹   ∈  dom  ~~>* )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							dmclimxlim.1 ⊢  ( 𝜑   →  𝑀   ∈  ℤ )  
						
							2 
								
							 
							dmclimxlim.2 ⊢  𝑍   =  ( ℤ≥  ‘ 𝑀  )  
						
							3 
								
							 
							dmclimxlim.3 ⊢  ( 𝜑   →  𝐹  : 𝑍  ⟶ ℝ )  
						
							4 
								
							 
							dmclimxlim.4 ⊢  ( 𝜑   →  𝐹   ∈  dom   ⇝  )  
						
							5 
								
							 
							xlimrel ⊢  Rel  ~~>*  
						
							6 
								1  2  3 
							 
							climliminf ⊢  ( 𝜑   →  ( 𝐹   ∈  dom   ⇝   ↔  𝐹   ⇝  ( lim inf ‘ 𝐹  ) ) )  
						
							7 
								4  6 
							 
							mpbid ⊢  ( 𝜑   →  𝐹   ⇝  ( lim inf ‘ 𝐹  ) )  
						
							8 
								1  2  3  7 
							 
							climxlim ⊢  ( 𝜑   →  𝐹  ~~>* ( lim inf ‘ 𝐹  ) )  
						
							9 
								
							 
							releldm ⊢  ( ( Rel  ~~>*  ∧  𝐹  ~~>* ( lim inf ‘ 𝐹  ) )  →  𝐹   ∈  dom  ~~>* )  
						
							10 
								5  8  9 
							 
							sylancr ⊢  ( 𝜑   →  𝐹   ∈  dom  ~~>* )