Metamath Proof Explorer


Theorem dmclimxlim

Description: A real valued sequence that converges w.r.t. the topology on the complex numbers, converges w.r.t. the topology on the extended reals (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses dmclimxlim.1 φM
dmclimxlim.2 Z=M
dmclimxlim.3 φF:Z
dmclimxlim.4 φFdom
Assertion dmclimxlim φFdom*

Proof

Step Hyp Ref Expression
1 dmclimxlim.1 φM
2 dmclimxlim.2 Z=M
3 dmclimxlim.3 φF:Z
4 dmclimxlim.4 φFdom
5 xlimrel Rel*
6 1 2 3 climliminf φFdomFlim infF
7 4 6 mpbid φFlim infF
8 1 2 3 7 climxlim φF*lim infF
9 releldm Rel*F*lim infFFdom*
10 5 8 9 sylancr φFdom*