Metamath Proof Explorer


Theorem climliminf

Description: A sequence of real numbers converges if and only if it converges to its inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses climliminf.1 φ M
climliminf.2 Z = M
climliminf.3 φ F : Z
Assertion climliminf φ F dom F lim inf F

Proof

Step Hyp Ref Expression
1 climliminf.1 φ M
2 climliminf.2 Z = M
3 climliminf.3 φ F : Z
4 1 2 3 climlimsup φ F dom F lim sup F
5 4 biimpd φ F dom F lim sup F
6 5 imp φ F dom F lim sup F
7 1 adantr φ F dom M
8 3 adantr φ F dom F : Z
9 simpr φ F dom F dom
10 7 2 8 9 climliminflimsupd φ F dom lim inf F = lim sup F
11 6 10 breqtrrd φ F dom F lim inf F
12 climrel Rel
13 12 releldmi F lim inf F F dom
14 13 adantl φ F lim inf F F dom
15 11 14 impbida φ F dom F lim inf F