Step |
Hyp |
Ref |
Expression |
1 |
|
climliminf.1 |
|- ( ph -> M e. ZZ ) |
2 |
|
climliminf.2 |
|- Z = ( ZZ>= ` M ) |
3 |
|
climliminf.3 |
|- ( ph -> F : Z --> RR ) |
4 |
1 2 3
|
climlimsup |
|- ( ph -> ( F e. dom ~~> <-> F ~~> ( limsup ` F ) ) ) |
5 |
4
|
biimpd |
|- ( ph -> ( F e. dom ~~> -> F ~~> ( limsup ` F ) ) ) |
6 |
5
|
imp |
|- ( ( ph /\ F e. dom ~~> ) -> F ~~> ( limsup ` F ) ) |
7 |
1
|
adantr |
|- ( ( ph /\ F e. dom ~~> ) -> M e. ZZ ) |
8 |
3
|
adantr |
|- ( ( ph /\ F e. dom ~~> ) -> F : Z --> RR ) |
9 |
|
simpr |
|- ( ( ph /\ F e. dom ~~> ) -> F e. dom ~~> ) |
10 |
7 2 8 9
|
climliminflimsupd |
|- ( ( ph /\ F e. dom ~~> ) -> ( liminf ` F ) = ( limsup ` F ) ) |
11 |
6 10
|
breqtrrd |
|- ( ( ph /\ F e. dom ~~> ) -> F ~~> ( liminf ` F ) ) |
12 |
|
climrel |
|- Rel ~~> |
13 |
12
|
releldmi |
|- ( F ~~> ( liminf ` F ) -> F e. dom ~~> ) |
14 |
13
|
adantl |
|- ( ( ph /\ F ~~> ( liminf ` F ) ) -> F e. dom ~~> ) |
15 |
11 14
|
impbida |
|- ( ph -> ( F e. dom ~~> <-> F ~~> ( liminf ` F ) ) ) |