| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climliminf.1 |
|- ( ph -> M e. ZZ ) |
| 2 |
|
climliminf.2 |
|- Z = ( ZZ>= ` M ) |
| 3 |
|
climliminf.3 |
|- ( ph -> F : Z --> RR ) |
| 4 |
1 2 3
|
climlimsup |
|- ( ph -> ( F e. dom ~~> <-> F ~~> ( limsup ` F ) ) ) |
| 5 |
4
|
biimpd |
|- ( ph -> ( F e. dom ~~> -> F ~~> ( limsup ` F ) ) ) |
| 6 |
5
|
imp |
|- ( ( ph /\ F e. dom ~~> ) -> F ~~> ( limsup ` F ) ) |
| 7 |
1
|
adantr |
|- ( ( ph /\ F e. dom ~~> ) -> M e. ZZ ) |
| 8 |
3
|
adantr |
|- ( ( ph /\ F e. dom ~~> ) -> F : Z --> RR ) |
| 9 |
|
simpr |
|- ( ( ph /\ F e. dom ~~> ) -> F e. dom ~~> ) |
| 10 |
7 2 8 9
|
climliminflimsupd |
|- ( ( ph /\ F e. dom ~~> ) -> ( liminf ` F ) = ( limsup ` F ) ) |
| 11 |
6 10
|
breqtrrd |
|- ( ( ph /\ F e. dom ~~> ) -> F ~~> ( liminf ` F ) ) |
| 12 |
|
climrel |
|- Rel ~~> |
| 13 |
12
|
releldmi |
|- ( F ~~> ( liminf ` F ) -> F e. dom ~~> ) |
| 14 |
13
|
adantl |
|- ( ( ph /\ F ~~> ( liminf ` F ) ) -> F e. dom ~~> ) |
| 15 |
11 14
|
impbida |
|- ( ph -> ( F e. dom ~~> <-> F ~~> ( liminf ` F ) ) ) |