Metamath Proof Explorer


Theorem climliminf

Description: A sequence of real numbers converges if and only if it converges to its inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses climliminf.1
|- ( ph -> M e. ZZ )
climliminf.2
|- Z = ( ZZ>= ` M )
climliminf.3
|- ( ph -> F : Z --> RR )
Assertion climliminf
|- ( ph -> ( F e. dom ~~> <-> F ~~> ( liminf ` F ) ) )

Proof

Step Hyp Ref Expression
1 climliminf.1
 |-  ( ph -> M e. ZZ )
2 climliminf.2
 |-  Z = ( ZZ>= ` M )
3 climliminf.3
 |-  ( ph -> F : Z --> RR )
4 1 2 3 climlimsup
 |-  ( ph -> ( F e. dom ~~> <-> F ~~> ( limsup ` F ) ) )
5 4 biimpd
 |-  ( ph -> ( F e. dom ~~> -> F ~~> ( limsup ` F ) ) )
6 5 imp
 |-  ( ( ph /\ F e. dom ~~> ) -> F ~~> ( limsup ` F ) )
7 1 adantr
 |-  ( ( ph /\ F e. dom ~~> ) -> M e. ZZ )
8 3 adantr
 |-  ( ( ph /\ F e. dom ~~> ) -> F : Z --> RR )
9 simpr
 |-  ( ( ph /\ F e. dom ~~> ) -> F e. dom ~~> )
10 7 2 8 9 climliminflimsupd
 |-  ( ( ph /\ F e. dom ~~> ) -> ( liminf ` F ) = ( limsup ` F ) )
11 6 10 breqtrrd
 |-  ( ( ph /\ F e. dom ~~> ) -> F ~~> ( liminf ` F ) )
12 climrel
 |-  Rel ~~>
13 12 releldmi
 |-  ( F ~~> ( liminf ` F ) -> F e. dom ~~> )
14 13 adantl
 |-  ( ( ph /\ F ~~> ( liminf ` F ) ) -> F e. dom ~~> )
15 11 14 impbida
 |-  ( ph -> ( F e. dom ~~> <-> F ~~> ( liminf ` F ) ) )