| Step |
Hyp |
Ref |
Expression |
| 1 |
|
liminflimsupclim.1 |
|- ( ph -> M e. ZZ ) |
| 2 |
|
liminflimsupclim.2 |
|- Z = ( ZZ>= ` M ) |
| 3 |
|
liminflimsupclim.3 |
|- ( ph -> F : Z --> RR ) |
| 4 |
|
liminflimsupclim.4 |
|- ( ph -> ( liminf ` F ) e. RR ) |
| 5 |
|
liminflimsupclim.5 |
|- ( ph -> ( limsup ` F ) <_ ( liminf ` F ) ) |
| 6 |
|
climrel |
|- Rel ~~> |
| 7 |
6
|
a1i |
|- ( ph -> Rel ~~> ) |
| 8 |
2
|
fvexi |
|- Z e. _V |
| 9 |
8
|
a1i |
|- ( ph -> Z e. _V ) |
| 10 |
3 9
|
fexd |
|- ( ph -> F e. _V ) |
| 11 |
10
|
limsupcld |
|- ( ph -> ( limsup ` F ) e. RR* ) |
| 12 |
4
|
rexrd |
|- ( ph -> ( liminf ` F ) e. RR* ) |
| 13 |
3
|
frexr |
|- ( ph -> F : Z --> RR* ) |
| 14 |
1 2 13
|
liminflelimsupuz |
|- ( ph -> ( liminf ` F ) <_ ( limsup ` F ) ) |
| 15 |
11 12 5 14
|
xrletrid |
|- ( ph -> ( limsup ` F ) = ( liminf ` F ) ) |
| 16 |
15 4
|
eqeltrd |
|- ( ph -> ( limsup ` F ) e. RR ) |
| 17 |
16
|
recnd |
|- ( ph -> ( limsup ` F ) e. CC ) |
| 18 |
|
nfcv |
|- F/_ k F |
| 19 |
1
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> M e. ZZ ) |
| 20 |
3
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> F : Z --> RR ) |
| 21 |
4
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> ( liminf ` F ) e. RR ) |
| 22 |
|
simpr |
|- ( ( ph /\ x e. RR+ ) -> x e. RR+ ) |
| 23 |
18 19 2 20 21 22
|
liminflt |
|- ( ( ph /\ x e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( liminf ` F ) < ( ( F ` k ) + x ) ) |
| 24 |
21
|
ad2antrr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( liminf ` F ) e. RR ) |
| 25 |
3
|
ad2antrr |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> F : Z --> RR ) |
| 26 |
2
|
uztrn2 |
|- ( ( j e. Z /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) |
| 27 |
26
|
adantll |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) |
| 28 |
25 27
|
ffvelcdmd |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) e. RR ) |
| 29 |
28
|
adantllr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) e. RR ) |
| 30 |
22
|
ad2antrr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> x e. RR+ ) |
| 31 |
|
rpre |
|- ( x e. RR+ -> x e. RR ) |
| 32 |
30 31
|
syl |
|- ( ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> x e. RR ) |
| 33 |
24 29 32
|
ltsubadd2d |
|- ( ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( ( ( liminf ` F ) - ( F ` k ) ) < x <-> ( liminf ` F ) < ( ( F ` k ) + x ) ) ) |
| 34 |
33
|
bicomd |
|- ( ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( ( liminf ` F ) < ( ( F ` k ) + x ) <-> ( ( liminf ` F ) - ( F ` k ) ) < x ) ) |
| 35 |
28
|
recnd |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) e. CC ) |
| 36 |
15
|
eqcomd |
|- ( ph -> ( liminf ` F ) = ( limsup ` F ) ) |
| 37 |
36 17
|
eqeltrd |
|- ( ph -> ( liminf ` F ) e. CC ) |
| 38 |
37
|
ad2antrr |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( liminf ` F ) e. CC ) |
| 39 |
35 38
|
negsubdi2d |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> -u ( ( F ` k ) - ( liminf ` F ) ) = ( ( liminf ` F ) - ( F ` k ) ) ) |
| 40 |
39
|
breq1d |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( -u ( ( F ` k ) - ( liminf ` F ) ) < x <-> ( ( liminf ` F ) - ( F ` k ) ) < x ) ) |
| 41 |
40
|
adantllr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( -u ( ( F ` k ) - ( liminf ` F ) ) < x <-> ( ( liminf ` F ) - ( F ` k ) ) < x ) ) |
| 42 |
41
|
bicomd |
|- ( ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( ( ( liminf ` F ) - ( F ` k ) ) < x <-> -u ( ( F ` k ) - ( liminf ` F ) ) < x ) ) |
| 43 |
29 24
|
resubcld |
|- ( ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( ( F ` k ) - ( liminf ` F ) ) e. RR ) |
| 44 |
|
ltnegcon1 |
|- ( ( ( ( F ` k ) - ( liminf ` F ) ) e. RR /\ x e. RR ) -> ( -u ( ( F ` k ) - ( liminf ` F ) ) < x <-> -u x < ( ( F ` k ) - ( liminf ` F ) ) ) ) |
| 45 |
43 32 44
|
syl2anc |
|- ( ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( -u ( ( F ` k ) - ( liminf ` F ) ) < x <-> -u x < ( ( F ` k ) - ( liminf ` F ) ) ) ) |
| 46 |
42 45
|
bitrd |
|- ( ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( ( ( liminf ` F ) - ( F ` k ) ) < x <-> -u x < ( ( F ` k ) - ( liminf ` F ) ) ) ) |
| 47 |
36
|
oveq2d |
|- ( ph -> ( ( F ` k ) - ( liminf ` F ) ) = ( ( F ` k ) - ( limsup ` F ) ) ) |
| 48 |
47
|
breq2d |
|- ( ph -> ( -u x < ( ( F ` k ) - ( liminf ` F ) ) <-> -u x < ( ( F ` k ) - ( limsup ` F ) ) ) ) |
| 49 |
48
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( -u x < ( ( F ` k ) - ( liminf ` F ) ) <-> -u x < ( ( F ` k ) - ( limsup ` F ) ) ) ) |
| 50 |
34 46 49
|
3bitrd |
|- ( ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( ( liminf ` F ) < ( ( F ` k ) + x ) <-> -u x < ( ( F ` k ) - ( limsup ` F ) ) ) ) |
| 51 |
50
|
ralbidva |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) -> ( A. k e. ( ZZ>= ` j ) ( liminf ` F ) < ( ( F ` k ) + x ) <-> A. k e. ( ZZ>= ` j ) -u x < ( ( F ` k ) - ( limsup ` F ) ) ) ) |
| 52 |
51
|
rexbidva |
|- ( ( ph /\ x e. RR+ ) -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( liminf ` F ) < ( ( F ` k ) + x ) <-> E. j e. Z A. k e. ( ZZ>= ` j ) -u x < ( ( F ` k ) - ( limsup ` F ) ) ) ) |
| 53 |
23 52
|
mpbid |
|- ( ( ph /\ x e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) -u x < ( ( F ` k ) - ( limsup ` F ) ) ) |
| 54 |
16
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> ( limsup ` F ) e. RR ) |
| 55 |
18 19 2 20 54 22
|
limsupgt |
|- ( ( ph /\ x e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) - x ) < ( limsup ` F ) ) |
| 56 |
54
|
ad2antrr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( limsup ` F ) e. RR ) |
| 57 |
|
ltsub23 |
|- ( ( ( F ` k ) e. RR /\ x e. RR /\ ( limsup ` F ) e. RR ) -> ( ( ( F ` k ) - x ) < ( limsup ` F ) <-> ( ( F ` k ) - ( limsup ` F ) ) < x ) ) |
| 58 |
29 32 56 57
|
syl3anc |
|- ( ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( ( ( F ` k ) - x ) < ( limsup ` F ) <-> ( ( F ` k ) - ( limsup ` F ) ) < x ) ) |
| 59 |
58
|
ralbidva |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) -> ( A. k e. ( ZZ>= ` j ) ( ( F ` k ) - x ) < ( limsup ` F ) <-> A. k e. ( ZZ>= ` j ) ( ( F ` k ) - ( limsup ` F ) ) < x ) ) |
| 60 |
59
|
rexbidva |
|- ( ( ph /\ x e. RR+ ) -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) - x ) < ( limsup ` F ) <-> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) - ( limsup ` F ) ) < x ) ) |
| 61 |
55 60
|
mpbid |
|- ( ( ph /\ x e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) - ( limsup ` F ) ) < x ) |
| 62 |
53 61
|
jca |
|- ( ( ph /\ x e. RR+ ) -> ( E. j e. Z A. k e. ( ZZ>= ` j ) -u x < ( ( F ` k ) - ( limsup ` F ) ) /\ E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) - ( limsup ` F ) ) < x ) ) |
| 63 |
2
|
rexanuz2 |
|- ( E. j e. Z A. k e. ( ZZ>= ` j ) ( -u x < ( ( F ` k ) - ( limsup ` F ) ) /\ ( ( F ` k ) - ( limsup ` F ) ) < x ) <-> ( E. j e. Z A. k e. ( ZZ>= ` j ) -u x < ( ( F ` k ) - ( limsup ` F ) ) /\ E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) - ( limsup ` F ) ) < x ) ) |
| 64 |
62 63
|
sylibr |
|- ( ( ph /\ x e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( -u x < ( ( F ` k ) - ( limsup ` F ) ) /\ ( ( F ` k ) - ( limsup ` F ) ) < x ) ) |
| 65 |
|
simplll |
|- ( ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ph ) |
| 66 |
|
simpllr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> x e. RR+ ) |
| 67 |
26
|
adantll |
|- ( ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) |
| 68 |
|
simpr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) /\ ( -u x < ( ( F ` k ) - ( limsup ` F ) ) /\ ( ( F ` k ) - ( limsup ` F ) ) < x ) ) -> ( -u x < ( ( F ` k ) - ( limsup ` F ) ) /\ ( ( F ` k ) - ( limsup ` F ) ) < x ) ) |
| 69 |
3
|
ffvelcdmda |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
| 70 |
16
|
adantr |
|- ( ( ph /\ k e. Z ) -> ( limsup ` F ) e. RR ) |
| 71 |
69 70
|
resubcld |
|- ( ( ph /\ k e. Z ) -> ( ( F ` k ) - ( limsup ` F ) ) e. RR ) |
| 72 |
71
|
adantlr |
|- ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) -> ( ( F ` k ) - ( limsup ` F ) ) e. RR ) |
| 73 |
31
|
ad2antlr |
|- ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) -> x e. RR ) |
| 74 |
|
abslt |
|- ( ( ( ( F ` k ) - ( limsup ` F ) ) e. RR /\ x e. RR ) -> ( ( abs ` ( ( F ` k ) - ( limsup ` F ) ) ) < x <-> ( -u x < ( ( F ` k ) - ( limsup ` F ) ) /\ ( ( F ` k ) - ( limsup ` F ) ) < x ) ) ) |
| 75 |
72 73 74
|
syl2anc |
|- ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) -> ( ( abs ` ( ( F ` k ) - ( limsup ` F ) ) ) < x <-> ( -u x < ( ( F ` k ) - ( limsup ` F ) ) /\ ( ( F ` k ) - ( limsup ` F ) ) < x ) ) ) |
| 76 |
75
|
adantr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) /\ ( -u x < ( ( F ` k ) - ( limsup ` F ) ) /\ ( ( F ` k ) - ( limsup ` F ) ) < x ) ) -> ( ( abs ` ( ( F ` k ) - ( limsup ` F ) ) ) < x <-> ( -u x < ( ( F ` k ) - ( limsup ` F ) ) /\ ( ( F ` k ) - ( limsup ` F ) ) < x ) ) ) |
| 77 |
68 76
|
mpbird |
|- ( ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) /\ ( -u x < ( ( F ` k ) - ( limsup ` F ) ) /\ ( ( F ` k ) - ( limsup ` F ) ) < x ) ) -> ( abs ` ( ( F ` k ) - ( limsup ` F ) ) ) < x ) |
| 78 |
77
|
ex |
|- ( ( ( ph /\ x e. RR+ ) /\ k e. Z ) -> ( ( -u x < ( ( F ` k ) - ( limsup ` F ) ) /\ ( ( F ` k ) - ( limsup ` F ) ) < x ) -> ( abs ` ( ( F ` k ) - ( limsup ` F ) ) ) < x ) ) |
| 79 |
65 66 67 78
|
syl21anc |
|- ( ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( ( -u x < ( ( F ` k ) - ( limsup ` F ) ) /\ ( ( F ` k ) - ( limsup ` F ) ) < x ) -> ( abs ` ( ( F ` k ) - ( limsup ` F ) ) ) < x ) ) |
| 80 |
79
|
ralimdva |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) -> ( A. k e. ( ZZ>= ` j ) ( -u x < ( ( F ` k ) - ( limsup ` F ) ) /\ ( ( F ` k ) - ( limsup ` F ) ) < x ) -> A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - ( limsup ` F ) ) ) < x ) ) |
| 81 |
80
|
reximdva |
|- ( ( ph /\ x e. RR+ ) -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( -u x < ( ( F ` k ) - ( limsup ` F ) ) /\ ( ( F ` k ) - ( limsup ` F ) ) < x ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - ( limsup ` F ) ) ) < x ) ) |
| 82 |
64 81
|
mpd |
|- ( ( ph /\ x e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - ( limsup ` F ) ) ) < x ) |
| 83 |
82
|
ralrimiva |
|- ( ph -> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - ( limsup ` F ) ) ) < x ) |
| 84 |
17 83
|
jca |
|- ( ph -> ( ( limsup ` F ) e. CC /\ A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - ( limsup ` F ) ) ) < x ) ) |
| 85 |
|
ax-resscn |
|- RR C_ CC |
| 86 |
85
|
a1i |
|- ( ph -> RR C_ CC ) |
| 87 |
3 86
|
fssd |
|- ( ph -> F : Z --> CC ) |
| 88 |
18 1 2 87
|
climuz |
|- ( ph -> ( F ~~> ( limsup ` F ) <-> ( ( limsup ` F ) e. CC /\ A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - ( limsup ` F ) ) ) < x ) ) ) |
| 89 |
84 88
|
mpbird |
|- ( ph -> F ~~> ( limsup ` F ) ) |
| 90 |
|
releldm |
|- ( ( Rel ~~> /\ F ~~> ( limsup ` F ) ) -> F e. dom ~~> ) |
| 91 |
7 89 90
|
syl2anc |
|- ( ph -> F e. dom ~~> ) |