Step |
Hyp |
Ref |
Expression |
1 |
|
liminflimsupclim.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
2 |
|
liminflimsupclim.2 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
liminflimsupclim.3 |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ ) |
4 |
|
liminflimsupclim.4 |
⊢ ( 𝜑 → ( lim inf ‘ 𝐹 ) ∈ ℝ ) |
5 |
|
liminflimsupclim.5 |
⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) |
6 |
|
climrel |
⊢ Rel ⇝ |
7 |
6
|
a1i |
⊢ ( 𝜑 → Rel ⇝ ) |
8 |
2
|
fvexi |
⊢ 𝑍 ∈ V |
9 |
8
|
a1i |
⊢ ( 𝜑 → 𝑍 ∈ V ) |
10 |
3 9
|
fexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
11 |
10
|
limsupcld |
⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) ∈ ℝ* ) |
12 |
4
|
rexrd |
⊢ ( 𝜑 → ( lim inf ‘ 𝐹 ) ∈ ℝ* ) |
13 |
3
|
frexr |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ* ) |
14 |
1 2 13
|
liminflelimsupuz |
⊢ ( 𝜑 → ( lim inf ‘ 𝐹 ) ≤ ( lim sup ‘ 𝐹 ) ) |
15 |
11 12 5 14
|
xrletrid |
⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) = ( lim inf ‘ 𝐹 ) ) |
16 |
15 4
|
eqeltrd |
⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) ∈ ℝ ) |
17 |
16
|
recnd |
⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) ∈ ℂ ) |
18 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐹 |
19 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑀 ∈ ℤ ) |
20 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝐹 : 𝑍 ⟶ ℝ ) |
21 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( lim inf ‘ 𝐹 ) ∈ ℝ ) |
22 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ+ ) |
23 |
18 19 2 20 21 22
|
liminflt |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( lim inf ‘ 𝐹 ) < ( ( 𝐹 ‘ 𝑘 ) + 𝑥 ) ) |
24 |
21
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( lim inf ‘ 𝐹 ) ∈ ℝ ) |
25 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝐹 : 𝑍 ⟶ ℝ ) |
26 |
2
|
uztrn2 |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
27 |
26
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
28 |
25 27
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
29 |
28
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
30 |
22
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑥 ∈ ℝ+ ) |
31 |
|
rpre |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) |
32 |
30 31
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑥 ∈ ℝ ) |
33 |
24 29 32
|
ltsubadd2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( lim inf ‘ 𝐹 ) − ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ↔ ( lim inf ‘ 𝐹 ) < ( ( 𝐹 ‘ 𝑘 ) + 𝑥 ) ) ) |
34 |
33
|
bicomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( lim inf ‘ 𝐹 ) < ( ( 𝐹 ‘ 𝑘 ) + 𝑥 ) ↔ ( ( lim inf ‘ 𝐹 ) − ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) |
35 |
28
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
36 |
15
|
eqcomd |
⊢ ( 𝜑 → ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) |
37 |
36 17
|
eqeltrd |
⊢ ( 𝜑 → ( lim inf ‘ 𝐹 ) ∈ ℂ ) |
38 |
37
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( lim inf ‘ 𝐹 ) ∈ ℂ ) |
39 |
35 38
|
negsubdi2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → - ( ( 𝐹 ‘ 𝑘 ) − ( lim inf ‘ 𝐹 ) ) = ( ( lim inf ‘ 𝐹 ) − ( 𝐹 ‘ 𝑘 ) ) ) |
40 |
39
|
breq1d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( - ( ( 𝐹 ‘ 𝑘 ) − ( lim inf ‘ 𝐹 ) ) < 𝑥 ↔ ( ( lim inf ‘ 𝐹 ) − ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) |
41 |
40
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( - ( ( 𝐹 ‘ 𝑘 ) − ( lim inf ‘ 𝐹 ) ) < 𝑥 ↔ ( ( lim inf ‘ 𝐹 ) − ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) |
42 |
41
|
bicomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( lim inf ‘ 𝐹 ) − ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ↔ - ( ( 𝐹 ‘ 𝑘 ) − ( lim inf ‘ 𝐹 ) ) < 𝑥 ) ) |
43 |
29 24
|
resubcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑘 ) − ( lim inf ‘ 𝐹 ) ) ∈ ℝ ) |
44 |
|
ltnegcon1 |
⊢ ( ( ( ( 𝐹 ‘ 𝑘 ) − ( lim inf ‘ 𝐹 ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( - ( ( 𝐹 ‘ 𝑘 ) − ( lim inf ‘ 𝐹 ) ) < 𝑥 ↔ - 𝑥 < ( ( 𝐹 ‘ 𝑘 ) − ( lim inf ‘ 𝐹 ) ) ) ) |
45 |
43 32 44
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( - ( ( 𝐹 ‘ 𝑘 ) − ( lim inf ‘ 𝐹 ) ) < 𝑥 ↔ - 𝑥 < ( ( 𝐹 ‘ 𝑘 ) − ( lim inf ‘ 𝐹 ) ) ) ) |
46 |
42 45
|
bitrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( lim inf ‘ 𝐹 ) − ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ↔ - 𝑥 < ( ( 𝐹 ‘ 𝑘 ) − ( lim inf ‘ 𝐹 ) ) ) ) |
47 |
36
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑘 ) − ( lim inf ‘ 𝐹 ) ) = ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) |
48 |
47
|
breq2d |
⊢ ( 𝜑 → ( - 𝑥 < ( ( 𝐹 ‘ 𝑘 ) − ( lim inf ‘ 𝐹 ) ) ↔ - 𝑥 < ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) ) |
49 |
48
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( - 𝑥 < ( ( 𝐹 ‘ 𝑘 ) − ( lim inf ‘ 𝐹 ) ) ↔ - 𝑥 < ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) ) |
50 |
34 46 49
|
3bitrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( lim inf ‘ 𝐹 ) < ( ( 𝐹 ‘ 𝑘 ) + 𝑥 ) ↔ - 𝑥 < ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) ) |
51 |
50
|
ralbidva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( lim inf ‘ 𝐹 ) < ( ( 𝐹 ‘ 𝑘 ) + 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) - 𝑥 < ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) ) |
52 |
51
|
rexbidva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( lim inf ‘ 𝐹 ) < ( ( 𝐹 ‘ 𝑘 ) + 𝑥 ) ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) - 𝑥 < ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) ) |
53 |
23 52
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) - 𝑥 < ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) |
54 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( lim sup ‘ 𝐹 ) ∈ ℝ ) |
55 |
18 19 2 20 54 22
|
limsupgt |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) − 𝑥 ) < ( lim sup ‘ 𝐹 ) ) |
56 |
54
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( lim sup ‘ 𝐹 ) ∈ ℝ ) |
57 |
|
ltsub23 |
⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ ( lim sup ‘ 𝐹 ) ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝑘 ) − 𝑥 ) < ( lim sup ‘ 𝐹 ) ↔ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) < 𝑥 ) ) |
58 |
29 32 56 57
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) − 𝑥 ) < ( lim sup ‘ 𝐹 ) ↔ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) < 𝑥 ) ) |
59 |
58
|
ralbidva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) − 𝑥 ) < ( lim sup ‘ 𝐹 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) < 𝑥 ) ) |
60 |
59
|
rexbidva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) − 𝑥 ) < ( lim sup ‘ 𝐹 ) ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) < 𝑥 ) ) |
61 |
55 60
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) < 𝑥 ) |
62 |
53 61
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) - 𝑥 < ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ∧ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) < 𝑥 ) ) |
63 |
2
|
rexanuz2 |
⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( - 𝑥 < ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) < 𝑥 ) ↔ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) - 𝑥 < ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ∧ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) < 𝑥 ) ) |
64 |
62 63
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( - 𝑥 < ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) < 𝑥 ) ) |
65 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝜑 ) |
66 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑥 ∈ ℝ+ ) |
67 |
26
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
68 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( - 𝑥 < ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) < 𝑥 ) ) → ( - 𝑥 < ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) < 𝑥 ) ) |
69 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
70 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( lim sup ‘ 𝐹 ) ∈ ℝ ) |
71 |
69 70
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ∈ ℝ ) |
72 |
71
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ∈ ℝ ) |
73 |
31
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → 𝑥 ∈ ℝ ) |
74 |
|
abslt |
⊢ ( ( ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < 𝑥 ↔ ( - 𝑥 < ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) < 𝑥 ) ) ) |
75 |
72 73 74
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < 𝑥 ↔ ( - 𝑥 < ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) < 𝑥 ) ) ) |
76 |
75
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( - 𝑥 < ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) < 𝑥 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < 𝑥 ↔ ( - 𝑥 < ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) < 𝑥 ) ) ) |
77 |
68 76
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( - 𝑥 < ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) < 𝑥 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < 𝑥 ) |
78 |
77
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( ( - 𝑥 < ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) < 𝑥 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < 𝑥 ) ) |
79 |
65 66 67 78
|
syl21anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( - 𝑥 < ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) < 𝑥 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < 𝑥 ) ) |
80 |
79
|
ralimdva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( - 𝑥 < ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) < 𝑥 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < 𝑥 ) ) |
81 |
80
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( - 𝑥 < ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) < 𝑥 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < 𝑥 ) ) |
82 |
64 81
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < 𝑥 ) |
83 |
82
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < 𝑥 ) |
84 |
17 83
|
jca |
⊢ ( 𝜑 → ( ( lim sup ‘ 𝐹 ) ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < 𝑥 ) ) |
85 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
86 |
85
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
87 |
3 86
|
fssd |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℂ ) |
88 |
18 1 2 87
|
climuz |
⊢ ( 𝜑 → ( 𝐹 ⇝ ( lim sup ‘ 𝐹 ) ↔ ( ( lim sup ‘ 𝐹 ) ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < 𝑥 ) ) ) |
89 |
84 88
|
mpbird |
⊢ ( 𝜑 → 𝐹 ⇝ ( lim sup ‘ 𝐹 ) ) |
90 |
|
releldm |
⊢ ( ( Rel ⇝ ∧ 𝐹 ⇝ ( lim sup ‘ 𝐹 ) ) → 𝐹 ∈ dom ⇝ ) |
91 |
7 89 90
|
syl2anc |
⊢ ( 𝜑 → 𝐹 ∈ dom ⇝ ) |