Step |
Hyp |
Ref |
Expression |
1 |
|
climliminflimsup.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
2 |
|
climliminflimsup.2 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
climliminflimsup.3 |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ ) |
4 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝑀 ∈ ℤ ) |
5 |
1 2 3
|
climliminf |
⊢ ( 𝜑 → ( 𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( lim inf ‘ 𝐹 ) ) ) |
6 |
5
|
biimpd |
⊢ ( 𝜑 → ( 𝐹 ∈ dom ⇝ → 𝐹 ⇝ ( lim inf ‘ 𝐹 ) ) ) |
7 |
6
|
imp |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ ( lim inf ‘ 𝐹 ) ) |
8 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 : 𝑍 ⟶ ℝ ) |
9 |
8
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
10 |
2 4 7 9
|
climrecl |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → ( lim inf ‘ 𝐹 ) ∈ ℝ ) |
11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ∈ dom ⇝ ) |
12 |
11
|
limsupcld |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → ( lim sup ‘ 𝐹 ) ∈ ℝ* ) |
13 |
4 2 8 11
|
climliminflimsupd |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) |
14 |
13
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → ( lim sup ‘ 𝐹 ) = ( lim inf ‘ 𝐹 ) ) |
15 |
12 14
|
xreqled |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) |
16 |
10 15
|
jca |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → ( ( lim inf ‘ 𝐹 ) ∈ ℝ ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ) |
17 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( lim inf ‘ 𝐹 ) ∈ ℝ ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ) → 𝑀 ∈ ℤ ) |
18 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( lim inf ‘ 𝐹 ) ∈ ℝ ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ) → 𝐹 : 𝑍 ⟶ ℝ ) |
19 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( ( lim inf ‘ 𝐹 ) ∈ ℝ ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ) → ( lim inf ‘ 𝐹 ) ∈ ℝ ) |
20 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ( lim inf ‘ 𝐹 ) ∈ ℝ ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ) → ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) |
21 |
17 2 18 19 20
|
liminflimsupclim |
⊢ ( ( 𝜑 ∧ ( ( lim inf ‘ 𝐹 ) ∈ ℝ ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ) → 𝐹 ∈ dom ⇝ ) |
22 |
16 21
|
impbida |
⊢ ( 𝜑 → ( 𝐹 ∈ dom ⇝ ↔ ( ( lim inf ‘ 𝐹 ) ∈ ℝ ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ) ) |