Metamath Proof Explorer


Theorem climliminflimsup

Description: A sequence of real numbers converges if and only if its inferior limit is real and it is greater than or equal to its superior limit (in such a case, they are actually equal, see liminfgelimsupuz ). (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses climliminflimsup.1 φ M
climliminflimsup.2 Z = M
climliminflimsup.3 φ F : Z
Assertion climliminflimsup φ F dom lim inf F lim sup F lim inf F

Proof

Step Hyp Ref Expression
1 climliminflimsup.1 φ M
2 climliminflimsup.2 Z = M
3 climliminflimsup.3 φ F : Z
4 1 adantr φ F dom M
5 1 2 3 climliminf φ F dom F lim inf F
6 5 biimpd φ F dom F lim inf F
7 6 imp φ F dom F lim inf F
8 3 adantr φ F dom F : Z
9 8 ffvelrnda φ F dom k Z F k
10 2 4 7 9 climrecl φ F dom lim inf F
11 simpr φ F dom F dom
12 11 limsupcld φ F dom lim sup F *
13 4 2 8 11 climliminflimsupd φ F dom lim inf F = lim sup F
14 13 eqcomd φ F dom lim sup F = lim inf F
15 12 14 xreqled φ F dom lim sup F lim inf F
16 10 15 jca φ F dom lim inf F lim sup F lim inf F
17 1 adantr φ lim inf F lim sup F lim inf F M
18 3 adantr φ lim inf F lim sup F lim inf F F : Z
19 simprl φ lim inf F lim sup F lim inf F lim inf F
20 simprr φ lim inf F lim sup F lim inf F lim sup F lim inf F
21 17 2 18 19 20 liminflimsupclim φ lim inf F lim sup F lim inf F F dom
22 16 21 impbida φ F dom lim inf F lim sup F lim inf F