Metamath Proof Explorer


Theorem climliminflimsup2

Description: A sequence of real numbers converges if and only if its superior limit is real and it is less than or equal to its inferior limit (in such a case, they are actually equal, see liminfgelimsupuz ). (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses climliminflimsup2.1 φ M
climliminflimsup2.2 Z = M
climliminflimsup2.3 φ F : Z
Assertion climliminflimsup2 φ F dom lim sup F lim sup F lim inf F

Proof

Step Hyp Ref Expression
1 climliminflimsup2.1 φ M
2 climliminflimsup2.2 Z = M
3 climliminflimsup2.3 φ F : Z
4 1 2 3 climliminflimsup φ F dom lim inf F lim sup F lim inf F
5 1 adantr φ lim inf F lim sup F lim inf F M
6 3 adantr φ lim inf F lim sup F lim inf F F : Z
7 simprl φ lim inf F lim sup F lim inf F lim inf F
8 simprr φ lim inf F lim sup F lim inf F lim sup F lim inf F
9 5 2 6 7 8 liminflimsupclim φ lim inf F lim sup F lim inf F F dom
10 1 adantr φ F dom M
11 3 adantr φ F dom F : Z
12 simpr φ F dom F dom
13 10 2 11 12 climliminflimsupd φ F dom lim inf F = lim sup F
14 13 eqcomd φ F dom lim sup F = lim inf F
15 9 14 syldan φ lim inf F lim sup F lim inf F lim sup F = lim inf F
16 15 7 eqeltrd φ lim inf F lim sup F lim inf F lim sup F
17 16 8 jca φ lim inf F lim sup F lim inf F lim sup F lim sup F lim inf F
18 simpr φ lim sup F lim inf F lim sup F lim inf F
19 1 adantr φ lim sup F lim inf F M
20 3 frexr φ F : Z *
21 20 adantr φ lim sup F lim inf F F : Z *
22 19 2 21 liminfgelimsupuz φ lim sup F lim inf F lim sup F lim inf F lim inf F = lim sup F
23 18 22 mpbid φ lim sup F lim inf F lim inf F = lim sup F
24 23 adantrl φ lim sup F lim sup F lim inf F lim inf F = lim sup F
25 simprl φ lim sup F lim sup F lim inf F lim sup F
26 24 25 eqeltrd φ lim sup F lim sup F lim inf F lim inf F
27 simprr φ lim sup F lim sup F lim inf F lim sup F lim inf F
28 26 27 jca φ lim sup F lim sup F lim inf F lim inf F lim sup F lim inf F
29 17 28 impbida φ lim inf F lim sup F lim inf F lim sup F lim sup F lim inf F
30 4 29 bitrd φ F dom lim sup F lim sup F lim inf F