| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climliminflimsup2.1 |
|- ( ph -> M e. ZZ ) |
| 2 |
|
climliminflimsup2.2 |
|- Z = ( ZZ>= ` M ) |
| 3 |
|
climliminflimsup2.3 |
|- ( ph -> F : Z --> RR ) |
| 4 |
1 2 3
|
climliminflimsup |
|- ( ph -> ( F e. dom ~~> <-> ( ( liminf ` F ) e. RR /\ ( limsup ` F ) <_ ( liminf ` F ) ) ) ) |
| 5 |
1
|
adantr |
|- ( ( ph /\ ( ( liminf ` F ) e. RR /\ ( limsup ` F ) <_ ( liminf ` F ) ) ) -> M e. ZZ ) |
| 6 |
3
|
adantr |
|- ( ( ph /\ ( ( liminf ` F ) e. RR /\ ( limsup ` F ) <_ ( liminf ` F ) ) ) -> F : Z --> RR ) |
| 7 |
|
simprl |
|- ( ( ph /\ ( ( liminf ` F ) e. RR /\ ( limsup ` F ) <_ ( liminf ` F ) ) ) -> ( liminf ` F ) e. RR ) |
| 8 |
|
simprr |
|- ( ( ph /\ ( ( liminf ` F ) e. RR /\ ( limsup ` F ) <_ ( liminf ` F ) ) ) -> ( limsup ` F ) <_ ( liminf ` F ) ) |
| 9 |
5 2 6 7 8
|
liminflimsupclim |
|- ( ( ph /\ ( ( liminf ` F ) e. RR /\ ( limsup ` F ) <_ ( liminf ` F ) ) ) -> F e. dom ~~> ) |
| 10 |
1
|
adantr |
|- ( ( ph /\ F e. dom ~~> ) -> M e. ZZ ) |
| 11 |
3
|
adantr |
|- ( ( ph /\ F e. dom ~~> ) -> F : Z --> RR ) |
| 12 |
|
simpr |
|- ( ( ph /\ F e. dom ~~> ) -> F e. dom ~~> ) |
| 13 |
10 2 11 12
|
climliminflimsupd |
|- ( ( ph /\ F e. dom ~~> ) -> ( liminf ` F ) = ( limsup ` F ) ) |
| 14 |
13
|
eqcomd |
|- ( ( ph /\ F e. dom ~~> ) -> ( limsup ` F ) = ( liminf ` F ) ) |
| 15 |
9 14
|
syldan |
|- ( ( ph /\ ( ( liminf ` F ) e. RR /\ ( limsup ` F ) <_ ( liminf ` F ) ) ) -> ( limsup ` F ) = ( liminf ` F ) ) |
| 16 |
15 7
|
eqeltrd |
|- ( ( ph /\ ( ( liminf ` F ) e. RR /\ ( limsup ` F ) <_ ( liminf ` F ) ) ) -> ( limsup ` F ) e. RR ) |
| 17 |
16 8
|
jca |
|- ( ( ph /\ ( ( liminf ` F ) e. RR /\ ( limsup ` F ) <_ ( liminf ` F ) ) ) -> ( ( limsup ` F ) e. RR /\ ( limsup ` F ) <_ ( liminf ` F ) ) ) |
| 18 |
|
simpr |
|- ( ( ph /\ ( limsup ` F ) <_ ( liminf ` F ) ) -> ( limsup ` F ) <_ ( liminf ` F ) ) |
| 19 |
1
|
adantr |
|- ( ( ph /\ ( limsup ` F ) <_ ( liminf ` F ) ) -> M e. ZZ ) |
| 20 |
3
|
frexr |
|- ( ph -> F : Z --> RR* ) |
| 21 |
20
|
adantr |
|- ( ( ph /\ ( limsup ` F ) <_ ( liminf ` F ) ) -> F : Z --> RR* ) |
| 22 |
19 2 21
|
liminfgelimsupuz |
|- ( ( ph /\ ( limsup ` F ) <_ ( liminf ` F ) ) -> ( ( limsup ` F ) <_ ( liminf ` F ) <-> ( liminf ` F ) = ( limsup ` F ) ) ) |
| 23 |
18 22
|
mpbid |
|- ( ( ph /\ ( limsup ` F ) <_ ( liminf ` F ) ) -> ( liminf ` F ) = ( limsup ` F ) ) |
| 24 |
23
|
adantrl |
|- ( ( ph /\ ( ( limsup ` F ) e. RR /\ ( limsup ` F ) <_ ( liminf ` F ) ) ) -> ( liminf ` F ) = ( limsup ` F ) ) |
| 25 |
|
simprl |
|- ( ( ph /\ ( ( limsup ` F ) e. RR /\ ( limsup ` F ) <_ ( liminf ` F ) ) ) -> ( limsup ` F ) e. RR ) |
| 26 |
24 25
|
eqeltrd |
|- ( ( ph /\ ( ( limsup ` F ) e. RR /\ ( limsup ` F ) <_ ( liminf ` F ) ) ) -> ( liminf ` F ) e. RR ) |
| 27 |
|
simprr |
|- ( ( ph /\ ( ( limsup ` F ) e. RR /\ ( limsup ` F ) <_ ( liminf ` F ) ) ) -> ( limsup ` F ) <_ ( liminf ` F ) ) |
| 28 |
26 27
|
jca |
|- ( ( ph /\ ( ( limsup ` F ) e. RR /\ ( limsup ` F ) <_ ( liminf ` F ) ) ) -> ( ( liminf ` F ) e. RR /\ ( limsup ` F ) <_ ( liminf ` F ) ) ) |
| 29 |
17 28
|
impbida |
|- ( ph -> ( ( ( liminf ` F ) e. RR /\ ( limsup ` F ) <_ ( liminf ` F ) ) <-> ( ( limsup ` F ) e. RR /\ ( limsup ` F ) <_ ( liminf ` F ) ) ) ) |
| 30 |
4 29
|
bitrd |
|- ( ph -> ( F e. dom ~~> <-> ( ( limsup ` F ) e. RR /\ ( limsup ` F ) <_ ( liminf ` F ) ) ) ) |