| Step | Hyp | Ref | Expression | 
						
							| 1 |  | climliminflimsup3.1 |  |-  ( ph -> M e. ZZ ) | 
						
							| 2 |  | climliminflimsup3.2 |  |-  Z = ( ZZ>= ` M ) | 
						
							| 3 |  | climliminflimsup3.3 |  |-  ( ph -> F : Z --> RR ) | 
						
							| 4 | 1 2 3 | climliminflimsup |  |-  ( ph -> ( F e. dom ~~> <-> ( ( liminf ` F ) e. RR /\ ( limsup ` F ) <_ ( liminf ` F ) ) ) ) | 
						
							| 5 | 3 | frexr |  |-  ( ph -> F : Z --> RR* ) | 
						
							| 6 | 1 2 5 | liminfgelimsupuz |  |-  ( ph -> ( ( limsup ` F ) <_ ( liminf ` F ) <-> ( liminf ` F ) = ( limsup ` F ) ) ) | 
						
							| 7 | 6 | anbi2d |  |-  ( ph -> ( ( ( liminf ` F ) e. RR /\ ( limsup ` F ) <_ ( liminf ` F ) ) <-> ( ( liminf ` F ) e. RR /\ ( liminf ` F ) = ( limsup ` F ) ) ) ) | 
						
							| 8 | 4 7 | bitrd |  |-  ( ph -> ( F e. dom ~~> <-> ( ( liminf ` F ) e. RR /\ ( liminf ` F ) = ( limsup ` F ) ) ) ) |