Step |
Hyp |
Ref |
Expression |
1 |
|
climliminflimsup3.1 |
|- ( ph -> M e. ZZ ) |
2 |
|
climliminflimsup3.2 |
|- Z = ( ZZ>= ` M ) |
3 |
|
climliminflimsup3.3 |
|- ( ph -> F : Z --> RR ) |
4 |
1 2 3
|
climliminflimsup |
|- ( ph -> ( F e. dom ~~> <-> ( ( liminf ` F ) e. RR /\ ( limsup ` F ) <_ ( liminf ` F ) ) ) ) |
5 |
3
|
frexr |
|- ( ph -> F : Z --> RR* ) |
6 |
1 2 5
|
liminfgelimsupuz |
|- ( ph -> ( ( limsup ` F ) <_ ( liminf ` F ) <-> ( liminf ` F ) = ( limsup ` F ) ) ) |
7 |
6
|
anbi2d |
|- ( ph -> ( ( ( liminf ` F ) e. RR /\ ( limsup ` F ) <_ ( liminf ` F ) ) <-> ( ( liminf ` F ) e. RR /\ ( liminf ` F ) = ( limsup ` F ) ) ) ) |
8 |
4 7
|
bitrd |
|- ( ph -> ( F e. dom ~~> <-> ( ( liminf ` F ) e. RR /\ ( liminf ` F ) = ( limsup ` F ) ) ) ) |