| Step | Hyp | Ref | Expression | 
						
							| 1 |  | climliminflimsup3.1 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 2 |  | climliminflimsup3.2 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 3 |  | climliminflimsup3.3 | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ℝ ) | 
						
							| 4 | 1 2 3 | climliminflimsup | ⊢ ( 𝜑  →  ( 𝐹  ∈  dom   ⇝   ↔  ( ( lim inf ‘ 𝐹 )  ∈  ℝ  ∧  ( lim sup ‘ 𝐹 )  ≤  ( lim inf ‘ 𝐹 ) ) ) ) | 
						
							| 5 | 3 | frexr | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ℝ* ) | 
						
							| 6 | 1 2 5 | liminfgelimsupuz | ⊢ ( 𝜑  →  ( ( lim sup ‘ 𝐹 )  ≤  ( lim inf ‘ 𝐹 )  ↔  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) ) ) | 
						
							| 7 | 6 | anbi2d | ⊢ ( 𝜑  →  ( ( ( lim inf ‘ 𝐹 )  ∈  ℝ  ∧  ( lim sup ‘ 𝐹 )  ≤  ( lim inf ‘ 𝐹 ) )  ↔  ( ( lim inf ‘ 𝐹 )  ∈  ℝ  ∧  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) ) ) ) | 
						
							| 8 | 4 7 | bitrd | ⊢ ( 𝜑  →  ( 𝐹  ∈  dom   ⇝   ↔  ( ( lim inf ‘ 𝐹 )  ∈  ℝ  ∧  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) ) ) ) |